Suppr超能文献

识别患有谵妄的医疗保险受益人群。

Identifying Medicare Beneficiaries With Delirium.

机构信息

Neurology.

Psychiatry.

出版信息

Med Care. 2022 Nov 1;60(11):852-859. doi: 10.1097/MLR.0000000000001767. Epub 2022 Aug 31.

Abstract

BACKGROUND

Each year, thousands of older adults develop delirium, a serious, preventable condition. At present, there is no well-validated method to identify patients with delirium when using Medicare claims data or other large datasets. We developed and assessed the performance of classification algorithms based on longitudinal Medicare administrative data that included International Classification of Diseases, 10th Edition diagnostic codes.

METHODS

Using a linked electronic health record (EHR)-Medicare claims dataset, 2 neurologists and 2 psychiatrists performed a standardized review of EHR records between 2016 and 2018 for a stratified random sample of 1002 patients among 40,690 eligible subjects. Reviewers adjudicated delirium status (reference standard) during this 3-year window using a structured protocol. We calculated the probability that each patient had delirium as a function of classification algorithms based on longitudinal Medicare claims data. We compared the performance of various algorithms against the reference standard, computing calibration-in-the-large, calibration slope, and the area-under-receiver-operating-curve using 10-fold cross-validation (CV).

RESULTS

Beneficiaries had a mean age of 75 years, were predominately female (59%), and non-Hispanic Whites (93%); a review of the EHR indicated that 6% of patients had delirium during the 3 years. Although several classification algorithms performed well, a relatively simple model containing counts of delirium-related diagnoses combined with patient age, dementia status, and receipt of antipsychotic medications had the best overall performance [CV- calibration-in-the-large <0.001, CV-slope 0.94, and CV-area under the receiver operating characteristic curve (0.88 95% confidence interval: 0.84-0.91)].

CONCLUSIONS

A delirium classification model using Medicare administrative data and International Classification of Diseases, 10th Edition diagnosis codes can identify beneficiaries with delirium in large datasets.

摘要

背景

每年都有数千名老年人患上谵妄,这是一种严重且可预防的疾病。目前,在使用医疗保险索赔数据或其他大型数据集时,尚无经过充分验证的方法来识别患有谵妄的患者。我们开发并评估了基于包含国际疾病分类第 10 版诊断代码的纵向医疗保险管理数据的分类算法的性能。

方法

使用电子病历(EHR)-医疗保险索赔的关联数据集,2 名神经科医生和 2 名精神科医生对 40690 名合格受试者中 1002 名患者的分层随机样本的 EHR 记录进行了 2016 年至 2018 年的标准化审查。审查员使用结构化协议在这 3 年的时间窗口内裁定谵妄状态(参考标准)。我们根据纵向医疗保险索赔数据计算每个患者患有谵妄的概率作为分类算法的函数。我们使用 10 倍交叉验证(CV)比较了各种算法与参考标准的性能,计算了大校准、校准斜率和接收器工作特征曲线下的面积。

结果

受益人的平均年龄为 75 岁,主要为女性(59%)和非西班牙裔白人(93%);对 EHR 的审查表明,在 3 年内有 6%的患者患有谵妄。虽然几种分类算法表现良好,但包含谵妄相关诊断计数的相对简单模型,结合患者年龄、痴呆状态和抗精神病药物的使用,具有最佳的整体性能[CV-大校准<0.001,CV-斜率 0.94,CV-接收器工作特征曲线下的面积(0.88 95%置信区间:0.84-0.91)]。

结论

使用医疗保险管理数据和国际疾病分类第 10 版诊断代码的谵妄分类模型可以在大型数据集中识别患有谵妄的受益人群。

相似文献

1
Identifying Medicare Beneficiaries With Delirium.识别患有谵妄的医疗保险受益人群。
Med Care. 2022 Nov 1;60(11):852-859. doi: 10.1097/MLR.0000000000001767. Epub 2022 Aug 31.
2
Identifying Medicare beneficiaries with dementia.识别患有痴呆症的医疗保险受益人群。
J Am Geriatr Soc. 2021 Aug;69(8):2240-2251. doi: 10.1111/jgs.17183. Epub 2021 Apr 26.
5
Medicare claims can identify post-stroke epilepsy.医疗保险索赔可识别中风后癫痫。
Epilepsy Res. 2019 Mar;151:40-47. doi: 10.1016/j.eplepsyres.2019.02.002. Epub 2019 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验