Suppr超能文献

用于高时间模糊效用模式挖掘的可扩展高效方法

Scalable and Efficient Approach for High Temporal Fuzzy Utility Pattern Mining.

作者信息

Ryu Taewoong, Kim Heonho, Lee Chanhee, Kim Heonmo, Vo Bay, Lin Jerry Chun-Wei, Pedrycz Witold, Yun Unil

出版信息

IEEE Trans Cybern. 2023 Dec;53(12):7672-7685. doi: 10.1109/TCYB.2022.3198661. Epub 2023 Nov 29.

Abstract

Fuzzy utility (FU) pattern mining with an advantage in human reasoning has become one of the interesting topics in studies of knowledge discovery. The discovered information in FU pattern mining from real-life quantitative databases with item profits is suitable for interpreting data from a human perspective because it is not expressed using numerical values but linguistic terms which consist of natural languages. State-of-the-art approaches in this literature provide extended results by considering temporal factors, such as seasons, which can be influential in real-life situations. However, they still suffer from scalability issues because they are based on level-wise approaches which generate a number of candidates. In this article, we propose a scalable and efficient approach with a novel data structure for mining high temporal FU patterns without generating candidates. Efficient pruning techniques and algorithms are presented to improve the performance of the proposed approach. Performance experiments on both real and synthetic datasets show that the suggested algorithm has better performance than the state-of-the-art algorithms in terms of runtime, memory usage, and scalability.

摘要

具有人类推理优势的模糊效用(FU)模式挖掘已成为知识发现研究中有趣的主题之一。从具有项目利润的现实生活定量数据库中进行FU模式挖掘所发现的信息适合从人类角度解释数据,因为它不是用数值而是用由自然语言组成的语言术语来表达的。该文献中的最新方法通过考虑时间因素(如季节)提供了扩展结果,这些因素在现实生活中可能具有影响力。然而,它们仍然存在可扩展性问题,因为它们基于生成大量候选模式的逐层方法。在本文中,我们提出了一种具有新颖数据结构的可扩展且高效的方法,用于挖掘高时间FU模式而不生成候选模式。我们还提出了有效的剪枝技术和算法来提高所提方法的性能。在真实数据集和合成数据集上的性能实验表明,所建议的算法在运行时间、内存使用和可扩展性方面比现有算法具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验