Suppr超能文献

基于[F]FDG PET/CT 图像的骨髓分割和放射组学分析在多发性骨髓瘤中评估可测量残留疾病。

Bone marrow segmentation and radiomics analysis of [F]FDG PET/CT images for measurable residual disease assessment in multiple myeloma.

机构信息

Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Avenida Complutense 30, Madrid 28040, Spain.

Department of Nuclear Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.

出版信息

Comput Methods Programs Biomed. 2022 Oct;225:107083. doi: 10.1016/j.cmpb.2022.107083. Epub 2022 Aug 24.

Abstract

BACKGROUND AND OBJECTIVES

The last few years have been crucial in defining the most appropriate way to quantitatively assess [F]FDG PET images in Multiple Myeloma (MM) patients to detect persistent tumor burden. The visual evaluation of images complements the assessment of Measurable Residual Disease (MRD) in bone marrow samples by multiparameter flow cytometry (MFC) or next-generation sequencing (NGS). The aim of this study was to quantify MRD by analyzing quantitative and texture [F]FDG PET features.

METHODS

Whole body [F]FDG PET of 39 patients with newly diagnosed MM were included in the database, and visually evaluated by experts in nuclear medicine. A segmentation methodology of the skeleton from CT images and an additional manual segmentation tool were proposed, implemented in a software solution including a graphical user interface. Both the compact bone and the spinal canal were removed from the segmentation to obtain only the bone marrow mask. SUV metrics, GLCM, GLRLM, and NGTDM parameters were extracted from the PET images and evaluated by Mann-Whitney U-tests and Spearman ρ rank correlation as valuable features differentiating PET+/PET- and MFC+/MFC- groups. Seven machine learning algorithms were applied for evaluating the classification performance of the extracted features.

RESULTS

Quantitative analysis for PET+/PET- differentiating demonstrated to be significant for most of the variables assessed with Mann-Whitney U-test such as Variance, Energy, and Entropy (p-value = 0.001). Moreover, the quantitative analysis with a balanced database evaluated by Mann-Whitney U-test revealed in even better results with 19 features with p-values < 0.001. On the other hand, radiomics analysis for MFC+/MFC- differentiating demonstrated the necessity of combining MFC evaluation with [F]FDG PET assessment in the MRD diagnosis. Machine learning algorithms using the image features for the PET+/PET- classification demonstrated high performance metrics but decreasing for the MFC+/MFC- classification.

CONCLUSIONS

A proof-of-concept for the extraction and evaluation of bone marrow radiomics features of [F]FDG PET images was proposed and implemented. The validation showed the possible use of these features for the image-based assessment of MRD.

摘要

背景与目的

过去几年对于确定最适合评估多发性骨髓瘤(MM)患者 [F]FDG PET 图像以检测持续性肿瘤负担的方法至关重要。图像的视觉评估补充了通过多参数流式细胞术(MFC)或下一代测序(NGS)对骨髓样本中可测量残留疾病(MRD)的评估。本研究的目的是通过分析定量和纹理 [F]FDG PET 特征来量化 MRD。

方法

将数据库中 39 例新诊断 MM 患者的全身 [F]FDG PET 纳入研究,由核医学专家进行视觉评估。提出了一种从 CT 图像中分割骨骼的方法和一个额外的手动分割工具,并在一个包含图形用户界面的软件解决方案中实现。从分割中去除致密骨和椎管,仅获得骨髓掩模。从 PET 图像中提取 SUV 指标、GLCM、GLRLM 和 NGTDM 参数,并通过 Mann-Whitney U 检验和 Spearman ρ 秩相关评估,作为区分 PET+/PET-和 MFC+/MFC-组的有价值特征。应用七种机器学习算法评估提取特征的分类性能。

结果

Mann-Whitney U 检验显示,大多数评估变量的定量分析对 PET+/PET- 区分具有显著意义,如方差、能量和熵(p 值=0.001)。此外,Mann-Whitney U 检验评估平衡数据库的定量分析显示,19 个特征的 p 值<0.001,结果更好。另一方面,MFC+/MFC- 区分的放射组学分析表明,在 MRD 诊断中需要将 MFC 评估与 [F]FDG PET 评估相结合。使用 PET+/PET- 分类的图像特征的机器学习算法显示出较高的性能指标,但 MFC+/MFC- 分类的指标逐渐降低。

结论

提出并实现了一种从 [F]FDG PET 图像中提取和评估骨髓放射组学特征的概念验证。验证表明,这些特征可能用于基于图像的 MRD 评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验