Suppr超能文献

长圆柱的声辐射力,以及番茄茸毛的潜在声转导。

Acoustic radiation force on a long cylinder, and potential sound transduction by tomato trichomes.

机构信息

State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, P.R. China; Department of Biomedical Engineering, Washington University, St. Louis, Missouri; NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri.

State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, P.R. China.

出版信息

Biophys J. 2022 Oct 18;121(20):3917-3926. doi: 10.1016/j.bpj.2022.08.038. Epub 2022 Aug 30.

Abstract

Acoustic transduction by plants has been proposed as a mechanism to enable just-in-time up-regulation of metabolically expensive defensive compounds. Although the mechanisms by which this "hearing" occurs are unknown, mechanosensation by elongated plant hair cells known as trichomes is suspected. To evaluate this possibility, we developed a theoretical model to evaluate the acoustic radiation force that an elongated cylinder can receive in response to sounds emitted by animals, including insect herbivores, and applied it to the long, cylindrical stem trichomes of the tomato plant Solanum lycopersicum. Based on perturbation theory and validated by finite element simulations, the model quantifies the effects of viscosity and frequency on this acoustic radiation force. Results suggest that acoustic emissions from certain animals, including insect herbivores, may produce acoustic radiation force sufficient to trigger stretch-activated ion channels.

摘要

植物的声学转导被认为是一种能够即时上调代谢昂贵的防御化合物的机制。虽然这种“听力”发生的机制尚不清楚,但人们怀疑这是由称为毛状体的植物长形毛细胞的机械感觉引起的。为了评估这种可能性,我们开发了一个理论模型来评估一个细长圆柱体能接收到的声辐射力,该力是对动物发出的声音(包括昆虫食草动物)的响应,并将其应用于番茄植物 Solanum lycopersicum 的长圆柱形茎毛状体。该模型基于摄动理论并通过有限元模拟验证,量化了粘度和频率对这种声辐射力的影响。结果表明,某些动物(包括昆虫食草动物)的发声可能会产生足以触发拉伸激活离子通道的声辐射力。

相似文献

1
Acoustic radiation force on a long cylinder, and potential sound transduction by tomato trichomes.
Biophys J. 2022 Oct 18;121(20):3917-3926. doi: 10.1016/j.bpj.2022.08.038. Epub 2022 Aug 30.
2
Trichomes as sensors: detecting activity on the leaf surface.
Plant Signal Behav. 2010 Jan;5(1):73-5. doi: 10.4161/psb.5.1.10234.
3
5
Plants on early alert: glandular trichomes as sensors for insect herbivores.
New Phytol. 2009 Nov;184(3):644-656. doi: 10.1111/j.1469-8137.2009.03002.x. Epub 2009 Aug 22.
8
Mediation of JA signalling in glandular trichomes by the woolly/SlMYC1 regulatory module improves pest resistance in tomato.
Plant Biotechnol J. 2021 Feb;19(2):375-393. doi: 10.1111/pbi.13473. Epub 2020 Sep 20.

引用本文的文献

1
The complex interaction between plants and acoustic signals: friends or foes?
Naturwissenschaften. 2025 May 30;112(3):43. doi: 10.1007/s00114-025-01995-z.
2
The fibrous character of pericellular matrix mediates cell mechanotransduction.
J Mech Phys Solids. 2023 Nov;180. doi: 10.1016/j.jmps.2023.105423. Epub 2023 Aug 27.

本文引用的文献

1
Mechanosensation triggers enhanced heavy metal ion uptake by non-glandular trichomes.
J Hazard Mater. 2022 Mar 15;426:127983. doi: 10.1016/j.jhazmat.2021.127983. Epub 2021 Dec 3.
2
Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials.
Nat Commun. 2021 Jun 22;12(1):3844. doi: 10.1038/s41467-021-24101-z.
3
Analysis and review of trichomes in plants.
BMC Plant Biol. 2021 Feb 1;21(1):70. doi: 10.1186/s12870-021-02840-x.
5
Sound perception and its effects in plants and algae.
Plant Signal Behav. 2020 Dec 1;15(12):1828674. doi: 10.1080/15592324.2020.1828674. Epub 2020 Oct 13.
6
The acoustic radiation force of a focused ultrasound beam on a suspended eukaryotic cell.
Ultrasonics. 2020 Dec;108:106205. doi: 10.1016/j.ultras.2020.106205. Epub 2020 Jun 18.
7
Acoustic Radiation Force and Torque on Small Particles as Measures of the Canonical Momentum and Spin Densities.
Phys Rev Lett. 2019 Nov 1;123(18):183901. doi: 10.1103/PhysRevLett.123.183901.
8
Extremely loud mating songs at close range in white bellbirds.
Curr Biol. 2019 Oct 21;29(20):R1068-R1069. doi: 10.1016/j.cub.2019.09.028.
9
Controlling intercellular flow through mechanosensitive plasmodesmata nanopores.
Nat Commun. 2019 Aug 8;10(1):3564. doi: 10.1038/s41467-019-11201-0.
10
Multiple C2 domains and transmembrane region proteins (MCTPs) tether membranes at plasmodesmata.
EMBO Rep. 2019 Aug;20(8):e47182. doi: 10.15252/embr.201847182. Epub 2019 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验