Suppr超能文献

用于调节神经元中谷氨酸受体的配位化学遗传学

[Coordination chemogenetics for regulation of glutamate receptors in neuron].

作者信息

Miura Yuta, Ojima Kento, Kiyonaka Shigeki

机构信息

Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University.

出版信息

Nihon Yakurigaku Zasshi. 2022;157(5):366-370. doi: 10.1254/fpj.22047.

Abstract

Transmembrane receptors transmit extracellular information into cells. In many cases, protein families are composed of highly homologous subtypes, each of which has unique cellular functions. Therefore, it is highly desired for understanding the physiological roles of the receptor in tissues or animals. However, it is difficult to control the activity of receptors in a cell-type- and subtype-specific manner with high temporal resolution using traditional pharmacological or genetic engineering methods. Recently, chemogenetics has been focused on controlling the cellular signaling in a cell-type-specific manner, which allows for elucidating the function of specific cell types with high temporal resolution. However, conventional chemogenetics are not suitable for understanding the roles of each receptor. Therefore, we have developed a chemogenetic method, termed coordination chemogenetics, in which coordination chemistry and genetic engineering are combined. The coordination chemogenetics enabled artificial activation of ionotropic glutamate receptor (GluA2) and metabotropic glutamate receptor (mGlu1). A palladium (Pd) complex successfully activated mGlu1 in mGlu1(N264H) knock-in mice, demonstrating that endogenous mGlu1 activation is sufficient to evoke a key cellular mechanism of synaptic plasticity that underlies motor learning in the cerebellum. We also expanded the coordination chemogenetics for orthogonal activation of mGlu1 activity using Cu, Zn, and Pd complexes for analyzing the individual roles of mGlu1 simultaneously. Notably, coordination chemogenetics can be expanded to apply selective inhibition of transmembrane receptors, and the dissociation is much slower than that of conventional inhibitors. Thus, coordination chemogenetics would be a unique method for controlling mGlu1 in a cell-type-specific manner.

摘要

跨膜受体将细胞外信息传递到细胞内。在许多情况下,蛋白质家族由高度同源的亚型组成,每个亚型都具有独特的细胞功能。因此,对于理解该受体在组织或动物中的生理作用有着强烈的需求。然而,使用传统的药理学或基因工程方法,难以在高时间分辨率下以细胞类型和亚型特异性的方式控制受体的活性。最近,化学遗传学一直专注于以细胞类型特异性的方式控制细胞信号传导,这使得能够在高时间分辨率下阐明特定细胞类型的功能。然而,传统的化学遗传学并不适合用于理解每个受体的作用。因此,我们开发了一种化学遗传学方法,称为配位化学遗传学,它将配位化学和基因工程结合在一起。配位化学遗传学能够人工激活离子型谷氨酸受体(GluA2)和代谢型谷氨酸受体(mGlu1)。一种钯(Pd)配合物成功地在mGlu1(N264H)基因敲入小鼠中激活了mGlu1,表明内源性mGlu1激活足以引发一种关键的突触可塑性细胞机制,该机制是小脑运动学习的基础。我们还扩展了配位化学遗传学,使用铜、锌和钯配合物对mGlu1活性进行正交激活,以便同时分析mGlu1的个体作用。值得注意的是,配位化学遗传学可以扩展到应用于跨膜受体的选择性抑制,并且解离比传统抑制剂慢得多。因此,配位化学遗传学将是一种以细胞类型特异性方式控制mGlu1的独特方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验