Suppr超能文献

无孔金属有机框架纳米线上的边界金属中心促进复合聚合物电解质的快速锂离子界面传输

Borderline Metal Centers on Nonporous Metal-Organic Framework Nanowire Boost Fast Li-Ion Interfacial Transport of Composite Polymer Electrolyte.

作者信息

Xu Jianqi, Ma Guixin, Wang Ning, Zhao Simin, Zhou Jisheng

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

出版信息

Small. 2022 Oct;18(40):e2204163. doi: 10.1002/smll.202204163. Epub 2022 Sep 1.

Abstract

Metal-organic frameworks (MOFs) fillers are emerging for composite polymer electrolytes (CPEs). Enhancing Lewis acid-base interaction (LABI) among MOFs, polymer and Li-salt is expected to promote Li -transport. However, it is unclear how to customize a strong LABI interface. The large surface-area of classical MOFs also interferes with clarifying the LABI influence on Li -transport. Herein, Bi as metal centers to design colloidal-dispersed nonporous MOFs (Bi/HMT-MOFs) nanowire with a surface-area of only 17.13 m g to prepare polyethylene oxide (PEO)-based CPEs (BMCPE) is chosen. The nonporous feature can exclude the surface-area effect on Li -transport. More interestingly, Bi is a typical borderline acid, which can interact with both hard-basic PEO and soft-basic Li-salt anion. Accordingly, Bi/HMT-MOFs are uniformly dispersed in the BMCPE to form a strong LABI interface with PEO and Li-salt, promoting Li-salt dissociation and providing rapid Li -transport channels. Despite the ultralow surface-area of Bi/HMT-MOFs, BMCPE exhibits significantly enhanced ion-conductivity and Li transference number, which completely rival traditional MOFs-filled CPEs. BMCPE also enables symmetric and full cells with excellent high-rate performance and long-term cycling stability. In contrast, when Bi sites are obscured, electrochemical performances are obviously decreased. Therefore, employing borderline metal centers will be an effective strategy to construct a LABI interface for high-performance MOFs-filled CPEs.

摘要

金属有机框架(MOFs)填料正逐渐应用于复合聚合物电解质(CPEs)中。增强MOFs、聚合物和锂盐之间的路易斯酸碱相互作用(LABI)有望促进锂离子传输。然而,目前尚不清楚如何定制一个强大的LABI界面。经典MOFs的大表面积也干扰了对LABI对锂离子传输影响的阐明。在此,选择以铋作为金属中心来设计比表面积仅为17.13 m²/g的胶体分散无孔MOFs(Bi/HMT-MOFs)纳米线,以制备基于聚环氧乙烷(PEO)的CPEs(BMCPE)。无孔特性可以排除表面积对锂离子传输的影响。更有趣的是,铋是一种典型的边界酸,可以与硬碱型的PEO和软碱型的锂盐阴离子相互作用。因此,Bi/HMT-MOFs均匀分散在BMCPE中,与PEO和锂盐形成强大的LABI界面,促进锂盐解离并提供快速的锂离子传输通道。尽管Bi/HMT-MOFs的表面积超低,但BMCPE仍表现出显著增强的离子电导率和锂迁移数,完全可与传统MOFs填充的CPEs相媲美。BMCPE还能使对称电池和全电池具有出色的高倍率性能和长期循环稳定性。相比之下,当铋位点被掩盖时,电化学性能明显下降。因此,采用边界金属中心将是构建用于高性能MOFs填充CPEs的LABI界面的有效策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验