Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Gandhinagar, 382355, Ahmedabad, Gujarat, India.
Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India.
Mol Neurobiol. 2022 Nov;59(11):6834-6856. doi: 10.1007/s12035-022-03005-z. Epub 2022 Sep 1.
Parkinson's disease (PD) is a chronic motor disorder, characterized by progressive loss of dopaminergic neurons. Numerous studies suggest that glucagon-like peptide-1 (GLP-1) secretagogue has a neuroprotective role in PD models. The present study evaluated potential of coffee bioactive compounds in terms of their ability to bind GPR-40/43 and tested the neuroprotective effect of best candidate on rotenone-induced PD mice acting via GLP-1 release. In silico molecular docking followed by binding free energy calculation revealed that chlorogenic acid (CGA) has a strong binding affinity for GPR-40/43 in comparison to other bioactive polyphenols. Molecular dynamics simulation studies revealed stable nature of GPR40-CGA and GPR43-CGA interaction and also provided information about the amino acid residues involved in binding. Subsequently, in vitro studies demonstrated that CGA-induced secretion of GLP-1 via enhancing cAMP levels in GLUTag cells. Furthermore, in vivo experiments utilizing rotenone-induced mouse model of PD revealed a significant rise in plasma GLP-1 after CGA administration (50 mg/kg, orally for 13 weeks) with concomitant increase in colonic GPR-40 and GPR-43 mRNA expression. CGA treatment also prevented rotenone-induced motor and cognitive impairments and significantly restored the rotenone-induced oxidative stress. Meanwhile, western blot results confirmed that CGA treatment downregulated rotenone-induced phosphorylated alpha-synuclein levels by upregulating PI3K/AKT signaling and inactivating GSK-3β through the release of GLP-1. CGA treatment ameliorated rotenone-induced dopaminergic nerve degeneration and alpha-synuclein accumulation in substantia nigra and augmented mean density of dopaminergic nerve fibers in striatum. These findings demonstrated novel biological function of CGA as a GLP-1 secretagogue. An increase in endogenous GLP-1 may render neuroprotection against a rotenone mouse model of PD and has the potential to be used as a neuroprotective agent in management of PD.
帕金森病(PD)是一种慢性运动障碍,其特征是多巴胺能神经元进行性丧失。大量研究表明,胰高血糖素样肽-1(GLP-1)分泌激动剂在 PD 模型中具有神经保护作用。本研究评估了咖啡生物活性化合物的潜力,考察了它们与 GPR-40/43 结合的能力,并测试了最佳候选物通过 GLP-1 释放对鱼藤酮诱导的 PD 小鼠的神经保护作用。基于结合自由能计算的计算分子对接表明,与其他生物活性多酚相比,绿原酸(CGA)对 GPR-40/43 具有很强的结合亲和力。分子动力学模拟研究表明,GPR40-CGA 和 GPR43-CGA 相互作用稳定,并提供了有关参与结合的氨基酸残基的信息。随后,体外研究表明 CGA 通过增强 GLUTag 细胞中的 cAMP 水平诱导 GLP-1 的分泌。此外,利用鱼藤酮诱导的 PD 小鼠模型进行的体内实验表明,CGA 给药(50mg/kg,口服 13 周)后血浆 GLP-1 水平显著升高,同时结肠 GPR-40 和 GPR-43 mRNA 表达增加。CGA 处理还可预防鱼藤酮诱导的运动和认知障碍,并显著恢复鱼藤酮诱导的氧化应激。同时,Western blot 结果证实 CGA 处理通过上调 GLP-1 释放来下调鱼藤酮诱导的磷酸化α-突触核蛋白水平,从而激活 PI3K/AKT 信号通路并使 GSK-3β失活。CGA 处理可改善鱼藤酮诱导的黑质多巴胺能神经变性和α-突触核蛋白积累,并增加纹状体中多巴胺能神经纤维的平均密度。这些发现证明了 CGA 作为 GLP-1 分泌激动剂的新生物学功能。内源性 GLP-1 的增加可能对鱼藤酮诱导的 PD 小鼠模型具有神经保护作用,并有可能作为 PD 管理中的神经保护剂。