Opt Lett. 2022 Sep 1;47(17):4283-4286. doi: 10.1364/OL.464764.
Lensless imaging has attracted attention as it avoids the bulky optical lens. Lensless holographic imaging is a type of a lensless imaging technique. Recently, deep learning has also shown tremendous potential in lensless holographic imaging. A labeled complex field including real and imaginary components of the samples is usually used as a training dataset. However, obtaining such a holographic dataset is challenging. In this Letter, we propose a lensless computational imaging technique with a hybrid framework of holographic propagation and deep learning. The proposed framework takes recorded holograms as input instead of complex fields, and compares the input and regenerated holograms. Compared to previous supervised learning schemes with a labeled complex field, our method does not require this supervision. Furthermore, we use the generative adversarial network to constrain the proposed framework and tackle the trivial solution. We demonstrate high-quality reconstruction with the proposed framework compared to previous deep learning methods.
无透镜成像是一种避免使用笨重的光学透镜的成像技术,因此受到了广泛关注。无透镜全息成像是无透镜成像技术的一种类型。最近,深度学习在无透镜全息成像中也显示出了巨大的潜力。通常,使用包含样本实部和虚部的标记复场作为训练数据集。然而,获取这样的全息数据集是具有挑战性的。在本信中,我们提出了一种基于全息传播和深度学习的混合框架的无透镜计算成像技术。所提出的框架以记录的全息图作为输入,而不是复场,并比较输入和再生的全息图。与以前使用标记复场的监督学习方案相比,我们的方法不需要这种监督。此外,我们使用生成对抗网络来约束所提出的框架并解决平凡解的问题。与以前的深度学习方法相比,我们的方法在重建方面具有更高的质量。