Suppr超能文献

基于注视-聚散协同的增强现实透视视觉

Gaze-Vergence-Controlled See-Through Vision in Augmented Reality.

出版信息

IEEE Trans Vis Comput Graph. 2022 Nov;28(11):3843-3853. doi: 10.1109/TVCG.2022.3203110. Epub 2022 Oct 21.

Abstract

Augmented Reality (AR) see-through vision is an interesting research topic since it enables users to see through a wall and see the occluded objects. Most existing research focuses on the visual effects of see-through vision, while the interaction method is less studied. However, we argue that using common interaction modalities, e.g., midair click and speech, may not be the optimal way to control see-through vision. This is because when we want to see through something, it is physically related to our gaze depth/vergence and thus should be naturally controlled by the eyes. Following this idea, this paper proposes a novel gaze-vergence-controlled (GVC) see-through vision technique in AR. Since gaze depth is needed, we build a gaze tracking module with two infrared cameras and the corresponding algorithm and assemble it into the Microsoft HoloLens 2 to achieve gaze depth estimation. We then propose two different GVC modes for see-through vision to fit different scenarios. Extensive experimental results demonstrate that our gaze depth estimation is efficient and accurate. By comparing with conventional interaction modalities, our GVC techniques are also shown to be superior in terms of efficiency and more preferred by users. Finally, we present four example applications of gaze-vergence-controlled see-through vision.

摘要

增强现实(AR)透视视觉是一个有趣的研究课题,因为它使用户能够透过墙壁看到被遮挡的物体。大多数现有的研究都集中在透视视觉的视觉效果上,而交互方法则研究较少。然而,我们认为使用常见的交互方式,例如,隔空点击和语音,可能不是控制透视视觉的最佳方式。这是因为当我们想要透视某件东西时,它与我们的注视深度/收敛有关,因此应该由眼睛自然控制。基于这一思想,本文提出了一种新的基于注视-收敛控制(GVC)的 AR 透视视觉技术。由于需要注视深度,我们使用两个红外摄像机和相应的算法构建了一个注视跟踪模块,并将其组装到 Microsoft HoloLens 2 中,以实现注视深度估计。然后,我们为透视视觉提出了两种不同的 GVC 模式,以适应不同的场景。大量的实验结果表明,我们的注视深度估计是高效和准确的。通过与传统的交互方式进行比较,我们的 GVC 技术在效率方面也表现出色,并且更受用户的欢迎。最后,我们展示了四个基于注视-收敛控制的透视视觉的应用示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验