Suppr超能文献

基于 NLP 的疟原虫智能计算模型

NLP-BCH-Ens: NLP-based intelligent computational model for discrimination of malaria parasite.

机构信息

Department of Computer Science, Abdul Wali Khan University Mardan, KP, 23400, Pakistan.

Department of Computer Science, Abdul Wali Khan University Mardan, KP, 23400, Pakistan.

出版信息

Comput Biol Med. 2022 Oct;149:105962. doi: 10.1016/j.compbiomed.2022.105962. Epub 2022 Aug 26.

Abstract

Plasmodium falciparum causes malaria, which is an infectious and fatal disease. In early days, malaria-infected cells were diagnosed using a microscope. owing to a huge number of instances for analysis and intricacy of time, it may lead to false detection. Automated parasite detection technologies are in high demand due to increased time consumption and erroneous detection. To create effective cures and treatments, it is critical to use an accurate approach for predicting malaria parasite. Here, numerous protein sequences formulation techniques namely: discrete methods, Biochemical, physiochemical and Natural language processing techniques are applied for transformation of protein sequences in to numerical descriptors. Four classification algorithms are utilized and the anticipated results of these classifiers were then fused to establish ensemble classification model via simple majority and genetic algorithm. In addition, BCH error correction code is incorporated with support vector machine using all the feature spaces. The simulated results demonstrate the remarkable achievement of proposed compared to previous models. Thus, our proposed model may be an effective tool for discriminating the secretory and non-secretory proteins of malaria parasite.

摘要

疟原虫引起疟疾,这是一种传染性和致命的疾病。在早期,疟疾感染的细胞是使用显微镜诊断的。由于需要分析的实例数量巨大,时间复杂,这可能导致错误的检测。由于时间消耗和错误检测增加,对自动化寄生虫检测技术的需求也很高。为了创造有效的治疗方法,使用准确的方法来预测疟原虫是至关重要的。在这里,许多蛋白质序列制定技术,如:离散方法、生化、物理化学和自然语言处理技术,用于将蛋白质序列转化为数值描述符。利用了四种分类算法,然后通过简单多数和遗传算法融合这些分类器的预期结果,建立集成分类模型。此外,使用所有特征空间将 BCH 纠错码与支持向量机结合使用。模拟结果表明,与以前的模型相比,所提出的方法取得了显著的成果。因此,我们提出的模型可能是区分疟原虫分泌和非分泌蛋白的有效工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验