Suppr超能文献

通过半导体双极型聚合物阴极实现高性能水系锌电池

Towards High-Performance Aqueous Zinc Batteries via a Semi-Conductive Bipolar-Type Polymer Cathode.

作者信息

Yan Lei, Zhu Qiang, Qi Yae, Xu Jie, Peng Yu, Shu Jie, Ma Jing, Wang Yonggang

机构信息

School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.

Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.

出版信息

Angew Chem Int Ed Engl. 2022 Oct 17;61(42):e202211107. doi: 10.1002/anie.202211107. Epub 2022 Sep 19.

Abstract

Aqueous Zn-organic batteries have received considerable attention owing to their green, low-cost and high safe nature. Unfortunately, organic materials generally exhibit insulator nature (≈10  S cm ), and most of reported promising performances of Zn-organic batteries are achieved with a low mass-loading (≈2 mg cm ) in cathode, which is far away from practical application (10 mg cm ). Herein, we demonstrate a semi-conductive polymer poly(1,8-diaminonaphthalene) (PDAN) cathode material for Zn batteries, which shows a moderate electronic conductivity (5.9×10  S cm ). Theoretical calculations and in situ/ex situ analysis reveal that the cathode involves a bipolar-type charge storage mechanism. Accordingly, the Zn//PDAN cell exhibits a promising capacity (140 mAh g at 0.1 A g ) and a remarkable cycle stability (1000 cycles without capacity fading) at a high mass-loading (10 mg cm ). These encouraging results shed light on the design of advanced organic electrode.

摘要

水系锌-有机电池因其绿色、低成本和高安全性而受到了广泛关注。不幸的是,有机材料通常表现出绝缘性质(≈10 S cm ),并且大多数已报道的锌-有机电池的优异性能是在阴极低质量负载(≈2 mg cm )下实现的,这与实际应用(10 mg cm )相差甚远。在此,我们展示了一种用于锌电池的半导体聚合物聚(1,8-二氨基萘)(PDAN)阴极材料,其显示出适度的电子电导率(5.9×10 S cm )。理论计算和原位/非原位分析表明,该阴极涉及双极型电荷存储机制。因此,Zn//PDAN电池在高质量负载(10 mg cm )下表现出有前景的容量(在0.1 A g 时为140 mAh g )和出色的循环稳定性(1000次循环无容量衰减)。这些令人鼓舞的结果为先进有机电极的设计提供了思路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验