Lim Ji Soo, Nahm Ho-Hyun, Campanini Marco, Lee Jounghee, Kim Yong-Jin, Park Heung-Sik, Suh Jeonghun, Jung Jun, Yang Yongsoo, Koo Tae Yeong, Rossell Marta D, Kim Yong-Hyun, Yang Chan-Ho
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea.
Center for Lattice Defectronics, KAIST, Yuseong-gu, Daejeon, 3414, Republic of Korea.
Nat Commun. 2022 Sep 1;13(1):5130. doi: 10.1038/s41467-022-32826-8.
Phase transition points can be used to critically reduce the ionic migration activation energy, which is important for realizing high-performance electrolytes at low temperatures. Here, we demonstrate a route toward low-temperature thermionic conduction in solids, by exploiting the critically lowered activation energy associated with oxygen transport in Ca-substituted bismuth ferrite (BiCaFeO) films. Our demonstration relies on the finding that a compositional phase transition occurs by varying Ca doping ratio across x ≃ 0.45 between two structural phases with oxygen-vacancy channel ordering along <100> or <110> crystal axis, respectively. Regardless of the atomic-scale irregularity in defect distribution at the doping ratio, the activation energy is largely suppressed to 0.43 eV, compared with ~0.9 eV measured in otherwise rigid phases. From first-principles calculations, we propose that the effective short-range attraction between two positively charged oxygen vacancies sharing lattice deformation not only forms the defect orders but also suppresses the activation energy through concerted hopping.
相变点可用于大幅降低离子迁移活化能,这对于在低温下实现高性能电解质至关重要。在此,我们展示了一种在固体中实现低温热离子传导的途径,通过利用与钙取代的铋铁氧体(BiCaFeO)薄膜中氧传输相关的大幅降低的活化能。我们的展示基于这样一个发现:通过在x≃0.45附近改变钙掺杂比例,在两个分别沿<100>或<110>晶轴具有氧空位通道有序排列的结构相之间会发生成分相变。无论掺杂比例下缺陷分布在原子尺度上的不规则性如何,与在其他刚性相中测得的约0.9 eV相比,活化能大幅降低至0.43 eV。基于第一性原理计算,我们提出,共享晶格变形的两个带正电的氧空位之间有效的短程吸引力不仅形成了缺陷有序排列,还通过协同跳跃抑制了活化能。