NDA Partners, a ProPharma Group Company, Washington, DC, USA.
Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA, USA.
AAPS J. 2022 Sep 1;24(5):97. doi: 10.1208/s12248-022-00746-6.
The two one-sided t-tests (TOST) procedure has been used to evaluate average bioequivalence (BE). As a regulatory standard, it is crucial that TOST distinguish BE from not-BE (NBE) when BE data are not lognormal. TOST was compared with a Bayesian procedure (BEST by Kruschke) in simulated datasets of test/reference ratios (T/R) which were BE and NBE, wherein (1) log(T/R) or T-R were normally distributed, (2) sample sizes ranged 10-50, and (3) extreme log(T/R) or T-R values were randomly included in datasets. The 90% "credible interval" (CrI) from BEST is a Bayesian alternative of the 90% confidence interval (CI) of TOST and it can be derived from a posterior distribution that is more reflective of the observed mean log(T/R) distribution that often deviates from normality. In the absence of extreme T/R values, both methods agreed BE when observed T/R were lognormal. BEST more accurately concluded BE or NBE, while requiring fewer subjects, when observed log(T/R) or T-R were normal in the presence of extreme values. Overall, TOST and BEST perform comparably on lognormal T/R, while BEST is more accurate, requiring fewer subjects when datasets are normal for T-R or contain extreme values. Of note, the normally distributed datasets only rarely contain extreme values. Our results imply that when BEST and TOST yield different BE assessment results from bioequivalent products, TOST may disadvantage applicants when T/R are not lognormal and/or include extreme T/R values. Application of BEST can address the situation when T/R are not lognormal or include extreme data values. Application of BEST to BE data can be considered a useful alternative to TOST for evaluation of BE and for efficient development of BE formulations.
双单侧检验(TOST)程序已被用于评估平均生物等效性(BE)。作为监管标准,当 BE 数据不是对数正态分布时,TOST 必须能够区分 BE 和非 BE(NBE)。在 BE 和 NBE 的测试/参考比值(T/R)模拟数据集中,比较了 TOST 和贝叶斯程序(Kruschke 的 BEST),其中(1)log(T/R)或 T-R 呈正态分布,(2)样本量范围为 10-50,(3)极端的 log(T/R)或 T-R 值随机包含在数据集中。BEST 的 90%“可信区间”(CrI)是 TOST 的 90%置信区间(CI)的贝叶斯替代,它可以从更能反映观测到的平均 log(T/R)分布的后验分布中得出,该分布通常偏离正态性。在没有极端 T/R 值的情况下,当观察到的 T/R 是对数正态分布时,两种方法都同意 BE。当存在极端值时,当观察到的 log(T/R)或 T-R 呈正态分布时,BEST 更准确地得出 BE 或 NBE 结论,同时需要的受试者更少。总体而言,当 T/R 呈对数正态分布时,TOST 和 BEST 的表现相当,而当数据集为 T/R 正态或包含极端值时,BEST 更准确,需要的受试者更少。值得注意的是,正态分布的数据集中很少包含极端值。我们的结果表明,当 BEST 和 TOST 对生物等效产品得出不同的 BE 评估结果时,当 T/R 不是对数正态分布且/或包含极端 T/R 值时,TOST 可能对申请人不利。应用 BEST 可以解决 T/R 不是对数正态分布或包含极端数据值的情况。将 BEST 应用于 BE 数据可以被认为是评估 BE 和高效开发 BE 制剂的 TOST 的有用替代方法。