Shi Xiaoran, Gao Weiwei, Liu Hongsheng, Fu Zhen-Guo, Zhang Gang, Zhang Yong-Wei, Liu Tao, Zhao Jijun, Gao Junfeng
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian, 116024, P. R. China.
Institute of Applied Physics and Computational Mathematics, Beijing, 100088, P. R. China.
Small. 2022 Oct;18(40):e2203274. doi: 10.1002/smll.202203274. Epub 2022 Sep 1.
The design and synthesis of novel two-dimensional (2D) materials that possess robust structural stability and unusual physical properties may open up enormous opportunities for device and engineering applications. Herein, a 2D sumanene lattice that can be regarded as a derivative of the conventional Kagome lattice is proposed. The tight-binding analysis demonstrates sumanene lattice contains two sets of Dirac cones and two sets of flat bands near the Fermi surface, distinctively different from the Kagome lattice. Using first-principles calculations, two possible routines for the realization of stable 2D sumanene monolayers (named α phase and β phase) are theoretically suggested, and an α-sumanene monolayer can be experimentally synthesized with chemical vapor deposition using C H as a precursor. Small binding energies on Au(111) surface (e.g., -37.86 eV Å for α phase) signify the possibility of their peel-off after growing on the noble metal substrate. Importantly, the GW plus Bethe-Salpeter equation calculations demonstrate both monolayers have moderate band gaps (1.94 eV for α) and ultrahigh carrier mobilities (3.4 × 10 cm V s for α). In particular, the α-sumanene monolayer possesses a strong exciton binding energy of 0.73 eV, suggesting potential applications in optics.
设计和合成具有强大结构稳定性和异常物理性质的新型二维(2D)材料,可能为器件和工程应用带来巨大机遇。在此,提出了一种可视为传统 Kagome 晶格衍生物的二维苏曼烯晶格。紧束缚分析表明,苏曼烯晶格在费米表面附近包含两组狄拉克锥和两组平带,这与 Kagome 晶格明显不同。使用第一性原理计算,从理论上提出了两种实现稳定二维苏曼烯单层(分别命名为α相和β相)的可能途径,并且可以使用 CH 作为前驱体通过化学气相沉积法实验合成α-苏曼烯单层。在 Au(111) 表面上的小结合能(例如,α相为 -37.86 eV Å)表明它们在生长在贵金属衬底上后有剥离的可能性。重要的是,GW 加贝特 - 萨尔皮特方程计算表明,两种单层都具有适度的带隙(α相为 1.94 eV)和超高的载流子迁移率(α相为 3.4 × 10 cm V s)。特别是,α-苏曼烯单层具有 0.73 eV 的强激子结合能,表明在光学方面具有潜在应用。