Suppr超能文献

基于改进 YOLOX 算法的森林虫害检测

An Improved YOLOX Algorithm for Forest Insect Pest Detection.

机构信息

Anji County Forestry Bureau, Anji 313300, China.

Zhejiang Forestry Technology Promotion Station, Hangzhou 310020, China.

出版信息

Comput Intell Neurosci. 2022 Aug 23;2022:5787554. doi: 10.1155/2022/5787554. eCollection 2022.

Abstract

A large number of insect pests in the forest will seriously affect the construction of forest resources and agriculture in China. In this regard, in order to deeply understand and analyze the existing forest pest detection technology, it is found that it cannot meet practical needs. In order to prevent the harm caused by forest pests, it is necessary to correctly identify the types of pests and take targeted control measures. Therefore, this paper proposes a forest pest detection algorithm based on improved YOLOX. Firstly, aiming at the problem that there are few image data of real deep forest pests in the wild, we use Mosaic, Mixup, and random erasure data enhancement to preprocess the images. Secondly, in order to extract fine-grained features, shallow information is introduced into the existing network architecture, and a two-way cross-scale feature fusion mechanism is adopted. Finally, the improved YOLOX algorithm proposed in this paper has achieved the best results on the public forest pest dataset IP102.

摘要

森林中的大量害虫将严重影响中国的森林资源和农业建设。有鉴于此,为了深入了解和分析现有的森林害虫检测技术,发现其无法满足实际需求。为了防止森林害虫造成的危害,有必要正确识别害虫的类型并采取有针对性的控制措施。因此,本文提出了一种基于改进 YOLOX 的森林害虫检测算法。首先,针对野外真实深林害虫图像数据较少的问题,我们使用 Mosaic、Mixup 和随机擦除数据增强方法对图像进行预处理。其次,为了提取细粒度特征,在现有网络架构中引入浅层信息,并采用双向交叉尺度特征融合机制。最后,本文提出的改进 YOLOX 算法在公共森林害虫数据集 IP102 上取得了最佳效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a8/9427259/b43dc4d8497c/CIN2022-5787554.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验