Suppr超能文献

Highlighting the difference in nanostructure between domain-forming and domainless protic ionic liquids.

作者信息

Sedov Igor A, Magsumov Timur I

机构信息

Chemical Institute, Kazan Federal University, Kremlevskaya Str., 18, Kazan, 420008, Russian Federation.

出版信息

Phys Chem Chem Phys. 2022 Sep 14;24(35):21477-21494. doi: 10.1039/d2cp02925a.

Abstract

Nanoheterogeneity in some ionic liquids is a known phenomenon, but quantifying or sometimes even identifying it is not a straightforward task. We compared several known and suggested some novel approaches to identify and characterize domain segregation using the results of atomistic simulations. 10 ammonium-based protic ionic liquids with different propensity to form segregated polar and apolar domains as suggested by experimental studies were considered. They include butyl-, propyl-, 2-methoxyethylammonium nitrate, butyl- and propylammonium hydrogen sulfate, butylammonium thiocyanate (domain-forming liquids), ethylammonium and pyrrolidinium nitrate (weakly pronounced segregation), methylammonium and 2-hydroxyethylammonium nitrate (domainless liquids). Molecular dynamics simulations were performed using models based on the OPLS-AA force field with scaled ion charges. Results show that domains can be recognized and the characteristic domain length scale can be determined from peaks of Ripley's functions, peaks and large-period oscillations of finite-volume radial distribution function integral, or difference of such integrals for polar and apolar atoms, and peaks of local atom density variance. These peaks disappear with increasing temperature due to the disruption of segregated domains. In domain-forming liquids, apolar atoms are more homogeneously distributed in space than polar atoms. In addition, the probability of molecular-sized cavity formation is significantly higher in apolar domains, which determines better solubility of apolar species in domain-forming ILs. The suggested approaches can be applied to various nanostructured liquids including both ionic and molecular solvents and mixtures, as well as other systems with mesoscale ordering.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验