Suppr超能文献

跨大规模网络的内在大脑活动模式可预测互惠倾向。

Intrinsic brain activity patterns across large-scale networks predict reciprocity propensity.

机构信息

Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.

School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.

出版信息

Hum Brain Mapp. 2022 Dec 15;43(18):5616-5629. doi: 10.1002/hbm.26038. Epub 2022 Aug 22.

Abstract

Reciprocity is prevalent across human societies, but individuals are heterogeneous regarding their reciprocity propensity. Although a large body of task-based brain imaging measures has shed light on the neural underpinnings of reciprocity at group level, the neural basis underlying the individual differences in reciprocity propensity remains largely unclear. Here, we combined brain imaging and machine learning techniques to individually predict reciprocity propensity from resting-state brain activity measured by fractional amplitude of low-frequency fluctuation. The brain regions contributing to the prediction were then analyzed for functional connectivity and decoding analyses, allowing for a data-driven quantitative inference on psychophysiological functions. Our results indicated that patterns of resting-state brain activity across multiple brain systems were capable of predicting individual reciprocity propensity, with the contributing regions distributed across the salience (e.g., ventrolateral prefrontal cortex), fronto-parietal (e.g., dorsolateral prefrontal cortex), default mode (e.g., ventromedial prefrontal cortex), and sensorimotor (e.g., supplementary motor area) networks. Those contributing brain networks are implicated in emotion and cognitive control, mentalizing, and motor-based processes, respectively. Collectively, these findings provide novel evidence on the neural signatures underlying the individual differences in reciprocity, and lend support the assertion that reciprocity emerges from interactions among regions embodied in multiple large-scale brain networks.

摘要

互惠在人类社会中普遍存在,但个体之间的互惠倾向存在差异。尽管大量基于任务的脑成像研究已经揭示了群体水平上互惠的神经基础,但个体互惠倾向差异的神经基础在很大程度上仍不清楚。在这里,我们结合脑成像和机器学习技术,从静息态脑活动的低频振幅分数中预测个体的互惠倾向。然后对预测所涉及的大脑区域进行功能连接和解码分析,从而对心理生理功能进行数据驱动的定量推断。我们的研究结果表明,多个大脑系统的静息态脑活动模式能够预测个体的互惠倾向,其涉及的区域分布在突显网络(例如,腹外侧前额叶皮层)、额顶叶网络(例如,背外侧前额叶皮层)、默认模式网络(例如,腹内侧前额叶皮层)和感觉运动网络(例如,辅助运动区)。这些贡献的大脑网络分别与情绪和认知控制、心理理论和基于运动的过程有关。总的来说,这些发现为互惠个体差异的神经特征提供了新的证据,并支持了互惠是从多个大规模大脑网络中体现的区域相互作用中产生的观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/9704792/a29452effdd1/HBM-43-5616-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验