Suppr超能文献

盐度梯度下人工潮汐湿地植物根际微生物氮转化和去除潜力的分子分析。

Molecular analysis of microbial nitrogen transformation and removal potential in the plant rhizosphere of artificial tidal wetlands across salinity gradients.

机构信息

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.

出版信息

Environ Res. 2022 Dec;215(Pt 1):114235. doi: 10.1016/j.envres.2022.114235. Epub 2022 Aug 30.

Abstract

This study explored the microbial nitrogen transformation and removal potential in the plant rhizosphere of seven artificial tidal wetlands under different salinity gradients (0-30‰). Molecular biological and stable isotopic analyses revealed the existence of simultaneous anammox (anaerobic ammonium oxidation), nitrification, DNRA (dissimilatory nitrate reduction to ammonium) and denitrification processes, contributing to nitrogen loss in rhizosphere soil. The microbial abundances were 2.87 × 10-9.12 × 10 (nitrogen functional genes) and 1.24 × 10-8.43 × 10 copies/g (16S rRNA gene), and the relative abundances of dissimilatory nitrate reduction and nitrification genera ranged from 6.75% to 24.41% and from 0.77% to 1.81%, respectively. The bacterial 16S rRNA high-throughput sequencing indicated that Bacillus, Zobellella and Paracoccus had obvious effects on nitrogen removal by heterotrophic nitrifying/aerobic denitrifying process (HN-AD), and autotrophic nitrification (Nitrosomonas, Nitrospira and Nitrospina), conventional denitrification (Bradyrhizobium, Burkholderia and Flavobacterium), anammox (Candidatus Brocadia and Candidatus Scalindua) and DNRA (Clostridium, Desulfovibrio and Photobacterium) organisms co-existed with HN-AD bacteria. The potential activities of DNRA, nitrification, anammox and denitrification were 1.23-9.23, 400.03-755.91, 3.12-35.24 and 30.51-300.04 nmolN·g·d, respectively. The denitrification process contributed to 73.59-88.65% of NO reduction, compared to 0.71-13.20% and 8.20-15.42% via DNRA and anammox, as 83.83-90.74% of N production was conducted by denitrification, with the rest through anammox. Meanwhile, the nitrification pathway accounted for 95.28-99.23% of NH oxidation, with the rest completed by anammox bacteria. Collectively, these findings improved our understanding on global nitrogen cycles, and provided a new idea for the removal of contaminants in saline water treatment.

摘要

本研究探索了在不同盐度梯度(0-30‰)下,七个人工潮汐湿地植物根际中的微生物氮转化和去除潜力。分子生物学和稳定同位素分析表明,同时存在厌氧氨氧化(anaerobic ammonium oxidation)、硝化、DNRA(异化硝酸盐还原为铵)和反硝化过程,导致根际土壤中的氮损失。微生物丰度为 2.87×10-9-1.24×10-8 个/克(氮功能基因)和 1.24×10-8-8.43×10-8 个/克(16S rRNA 基因),异化硝酸盐还原和硝化属的相对丰度分别为 6.75%-24.41%和 0.77%-1.81%。细菌 16S rRNA 高通量测序表明,芽孢杆菌属、Zobellella 和 Paracoccus 对异养硝化/好氧反硝化(HN-AD)过程中的氮去除有明显影响,而自养硝化(Nitrosomonas、Nitrospira 和 Nitrospina)、常规反硝化(Bradyrhizobium、Burkholderia 和 Flavobacterium)、厌氧氨氧化(Candidatus Brocadia 和 Candidatus Scalindua)和 DNRA(Clostridium、Desulfovibrio 和 Photobacterium)生物共存。DNRA、硝化、厌氧氨氧化和反硝化的潜在活性分别为 1.23-9.23、400.03-755.91、3.12-35.24 和 30.51-300.04 nmolN·g·d。与 0.71-13.20%和 8.20-15.42%通过 DNRA 和厌氧氨氧化相比,反硝化过程对 NO 还原的贡献为 73.59-88.65%,而 83.83-90.74%的 N 生成通过反硝化进行,其余通过厌氧氨氧化进行。同时,硝化途径占 NH 氧化的 95.28-99.23%,其余由厌氧氨氧化细菌完成。总的来说,这些发现提高了我们对全球氮循环的认识,并为咸水处理中污染物的去除提供了新的思路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验