Suppr超能文献

利用地理环境建模方法和无人机图像进行多灾害测绘的分析技术。

Analytical techniques for mapping multi-hazard with geo-environmental modeling approaches and UAV images.

机构信息

Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University, Shiraz, 71441-13131, Iran.

Department of Arid Zone Management, Gorgan University of Agricultural Sciences and Natural Resources, Gorgān, Iran.

出版信息

Sci Rep. 2022 Sep 2;12(1):14946. doi: 10.1038/s41598-022-18757-w.

Abstract

The quantitative spatial analysis is a strong tool for the study of natural hazards and their interactions. Over the last decades, a range of techniques have been exceedingly used in spatial analysis, especially applying GIS and R software. In the present paper, the multi-hazard susceptibility maps compared in 2020 and 2021 using an array of data mining techniques, GIS tools, and Unmanned aerial vehicles. The produced maps imply the most effective morphometric parameters on collapsed pipes, gully heads, and landslides using the linear regression model. The multi-hazard maps prepared using seven classifiers of Boosted regression tree (BRT), Flexible discriminant analysis (FDA), Multivariate adaptive regression spline (MARS), Mixture discriminant analysis (MDA), Random forest (RF), Generalized linear model (GLM), and Support vector machine (SVM). The results of each model revealed that the greatest percentage of the study region was low susceptible to collapsed pipes, landslides, and gully heads, respectively. The results of the multi-hazard models represented that 52.22% and 48.18% of the study region were not susceptible to any hazards in 2020 and 2021, while 6.19% (2020) and 7.39% (2021) of the region were at the risk of all compound events. The validation results indicate the area under the receiver operating characteristic curve of all applied models was more than 0.70 for the landform susceptibility maps in 2020 and 2021. It was found where multiple events co-exist, what their potential interrelated effects are or how they interact jointly. It is the direction to take in the future to determine the combined effect of multi-hazards so that policymakers can have a better attitude toward sustainable management of environmental landscapes and support socio-economic development.

摘要

定量空间分析是研究自然灾害及其相互作用的有力工具。在过去的几十年中,一系列技术已被广泛应用于空间分析,特别是应用 GIS 和 R 软件。在本文中,使用多种数据挖掘技术、GIS 工具和无人机比较了 2020 年和 2021 年的多灾害易感性图。生成的地图使用线性回归模型暗示了对塌陷管道、沟壑头部和滑坡最有效的形态参数。使用七种分类器(Boosted 回归树 (BRT)、灵活判别分析 (FDA)、多元自适应回归样条 (MARS)、混合判别分析 (MDA)、随机森林 (RF)、广义线性模型 (GLM) 和支持向量机 (SVM))编制了多灾害图。每个模型的结果表明,研究区域的最大比例对塌陷管道、滑坡和沟壑头部分别具有低易感性。多灾害模型的结果表明,研究区域的 52.22%和 48.18%在 2020 年和 2021 年不受任何灾害的影响,而研究区域的 6.19%(2020 年)和 7.39%(2021 年)处于所有复合事件的风险之中。验证结果表明,2020 年和 2021 年地形易感性图所有应用模型的接收者操作特征曲线下的面积均大于 0.70。它发现了多个事件同时存在的地方,它们的潜在相互关系是什么,或者它们如何共同相互作用。未来的方向是确定多灾害的综合效应,以便决策者能够对环境景观的可持续管理采取更好的态度,并支持社会经济发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe8/9440097/4c2f5e2d691f/41598_2022_18757_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验