Honda Asami, Yamane Keisaku, Iwasa Kohei, Oka Kazuhiko, Toda Yasunori, Morita Ryuji
Department of Applied Physics, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, 060-8628, Japan.
Faculty of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, 036-8561, Japan.
Sci Rep. 2022 Sep 2;12(1):14991. doi: 10.1038/s41598-022-18145-4.
As an extension of pulse shaping techniques using the space-time coupling of ultrashort pulses or chirped pulses, we demonstrated the ultrafast beam pattern modulation by the superposition of chirped optical vortex pulses with orthogonal spatial modes. The stable and robust modulations with a modulation frequency of sub-THz were carried out by using the precise phase control technique of the constituent pulses in both the spatial and time/frequency domains. The performed modulations were ultrafast ring-shaped optical lattice modulation with 2, 4 and 6 petals, and beam pattern modulations in the radial direction. The simple linear fringe modulation was also demonstrated with chirped spatially Gaussian pulses. While the input pulse energy of the pulses to be modulated was 360 [Formula: see text]J, the output pulse energy of the modulated pulses was 115 [Formula: see text]J with the conversion efficiency of [Formula: see text] 32%. Demonstrating the superposition of orthogonal spatial modes in several ways, this ultrafast beam pattern modulation technique with high intensity can be applicable to the spatially coherent excitation of quasi-particles or collective excitation of charge and spin with dynamic degrees of freedom. Furthermore, we analyzed the Poynting vector and OAM of the composed chirped OV pulses. Although the ring-shaped optical lattice composed of OV pulse with topological charges of [Formula: see text] is rotated in a sub-THz frequency, the net orbital angular momentum (OAM) averaged over one optical period is found to be negligible. Hence, it is necessary to require careful attention to the application of the OAM transfer interaction with matter by employing such rotating ring-shaped optical lattices.
作为使用超短脉冲或啁啾脉冲的时空耦合的脉冲整形技术的扩展,我们展示了通过具有正交空间模式的啁啾光学涡旋脉冲的叠加实现的超快光束图案调制。通过在空间和时间/频率域中对组成脉冲进行精确的相位控制技术,实现了调制频率为亚太赫兹的稳定且鲁棒的调制。所执行的调制包括具有2瓣、4瓣和6瓣的超快环形光学晶格调制以及径向光束图案调制。还展示了用啁啾空间高斯脉冲进行的简单线性条纹调制。当待调制脉冲的输入脉冲能量为360 [公式:见正文]J时,调制后脉冲的输出脉冲能量为115 [公式:见正文]J,转换效率为[公式:见正文] 32%。通过多种方式展示了正交空间模式的叠加,这种高强度的超快光束图案调制技术可应用于准粒子的空间相干激发或具有动态自由度的电荷和自旋的集体激发。此外,我们分析了合成啁啾光学涡旋脉冲的坡印廷矢量和轨道角动量。尽管由拓扑电荷为[公式:见正文]的光学涡旋脉冲组成的环形光学晶格以亚太赫兹频率旋转,但发现在一个光学周期内平均的净轨道角动量(OAM)可以忽略不计。因此,在通过使用这种旋转环形光学晶格应用OAM与物质的转移相互作用时需要格外小心。