Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
J Environ Manage. 2022 Oct 15;320:115858. doi: 10.1016/j.jenvman.2022.115858. Epub 2022 Aug 11.
Intensifying human activity coupled with climate change increase the transport of excess riverine nitrogen (N) and phosphorus (P) loading from catchment to lake, leading to eutrophication and harmful algal blooms worldwide. To improve understanding of multi-temporal patterns of riverine N and P export and their hydro-biogeochemical controls over both episodic events and long-term trend, we analyzed and interpreted high-frequency data of total nitrogen (TN), ammonia-nitrogen (NH-N), and total phosphorus (TP) provided by an automatic water quality monitoring station in a typical agricultural catchment draining to Lake Chaohu, China. Mann-Kendall test revealed a significant decreasing trend of riverine N and P concentration most of the time during 2018-2020. At the sub-daily scale, intraday TN concentrations varied by more than 1 mg/L in 31.8% of the period. Monthly TN and TP concentrations were particularly high in December 2019, indicating combined effect of hydrologic (long dry antecedent period and subsequent intensive rainfall events) and anthropogenic controls (fertilization and agricultural drainage). Significantly higher TN concentrations in winter and TP concentrations in summer reflected coupled dominances of precipitation and temperature on hydrologic and biogeochemical processes. Rainfall events with very heavy intensity drove disproportionate N and P loads (more than 20% of the total export) in only 3.2% of the period. Moderate and very heavy events registered the highest TN and TP concentrations, respectively. Our results highlighted the importance of automatic water quality monitoring station to reveal dynamics of riverine N and P export, which may imply future nutrient loading abatement plans for lake-connected catchment.
人类活动的加剧加上气候变化,增加了从集水区向湖泊输送过量河流氮(N)和磷(P)负荷的运输,导致了世界各地的富营养化和有害藻类水华。为了更好地了解河流 N 和 P 输出的多时间尺度模式及其对突发事件和长期趋势的水-生物地球化学控制,我们分析和解释了一个典型农业流域向中国巢湖排水的自动水质监测站提供的总氮(TN)、氨氮(NH-N)和总磷(TP)的高频数据。Mann-Kendall 检验显示,在 2018 年至 2020 年期间,大部分时间河流 N 和 P 浓度呈显著下降趋势。在亚日尺度上,TN 浓度在 31.8%的时间内变化超过 1mg/L。2019 年 12 月,TN 和 TP 的月浓度特别高,表明水文(长旱前导期和随后的密集降雨事件)和人为控制(施肥和农业排水)的综合影响。冬季 TN 浓度显著升高,夏季 TP 浓度显著升高,反映了降水和温度对水文和生物地球化学过程的耦合主导作用。仅在 3.2%的时间内,强降雨事件驱动了不成比例的 N 和 P 负荷(超过总输出的 20%)。中度和强降雨事件分别记录了最高的 TN 和 TP 浓度。我们的研究结果强调了自动水质监测站在揭示河流 N 和 P 输出动态方面的重要性,这可能意味着未来对与湖泊相连的集水区的养分减排计划。