Suyama Shun, Kato Shingo, Nakaura Takeshi, Azuma Mai, Kodama Sho, Nakayama Naoki, Fukui Kazuki, Utsunomiya Daisuke
Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan.
Heart Vessels. 2023 Mar;38(3):361-370. doi: 10.1007/s00380-022-02167-z. Epub 2022 Sep 3.
Extracellular volume fraction (ECV) by cardiac magnetic resonance (CMR) allows for the non-invasive quantification of diffuse myocardial fibrosis. Texture analysis and machine learning are now gathering attention in the medical field to exploit the ability of diagnostic imaging for various diseases. This study aimed to investigate the predictive value of texture analysis of ECV and machine learning for predicting response to guideline-directed medical therapy (GDMT) for patients with non-ischemic dilated cardiomyopathy (NIDCM). A total of one-hundred and fourteen NIDCM patients [age: 63 ± 12 years, 91 (81%) males] were retrospectively analyzed. We performed texture analysis of ECV mapping of LV myocardium using dedicated software. We calculated nine histogram-based features (mean, standard deviation, maximum, minimum, etc.) and five gray-level co-occurrence matrices. Five machine learning techniques and the fivefold cross-validation method were used to develop prediction models for LVRR by GDMT based on 14 texture parameters on ECV mapping. We defined the LVRR as follows: LVEF increased ≥ 10% points and decreased LVEDV ≥ 10% on echocardiography after GDMT > 12 months. Fifty (44%) patients were classified as non-responders. The area under the receiver operating characteristics curve for predicting non-responder was 0.82 for eXtreme Gradient Boosting, 0.85 for support vector machine, 0.76 for multi-layer perception, 0.81 for Naïve Bayes, 0.77 for logistic regression, respectively. Mean ECV value was the most critical factor among texture features for differentiating NIDCM patients with LVRR and those without (0.28 ± 0.03 vs. 0.36 ± 0.06, p < 0.001). Machine learning analysis using the support vector machine may be helpful in detecting high-risk NIDCM patients resistant to GDMT. Mean ECV is the most crucial feature among texture features.
通过心脏磁共振成像(CMR)测量的细胞外容积分数(ECV)能够对弥漫性心肌纤维化进行无创定量分析。纹理分析和机器学习目前在医学领域正受到关注,以利用诊断成像技术对各种疾病的诊断能力。本研究旨在探讨ECV纹理分析和机器学习对预测非缺血性扩张型心肌病(NIDCM)患者对指南导向药物治疗(GDMT)反应的预测价值。对114例NIDCM患者[年龄:63±12岁,91例(81%)为男性]进行了回顾性分析。我们使用专用软件对左心室心肌的ECV映射进行纹理分析。我们计算了九个基于直方图的特征(均值、标准差、最大值、最小值等)和五个灰度共生矩阵。使用五种机器学习技术和五折交叉验证方法,基于ECV映射上的14个纹理参数,开发了GDMT治疗左心室射血分数恢复(LVRR)的预测模型。我们将LVRR定义如下:在超过12个月的GDMT治疗后,超声心动图显示左心室射血分数(LVEF)增加≥10个百分点且左心室舒张末期容积(LVEDV)减少≥10%。50例(44%)患者被归类为无反应者。预测无反应者的受试者工作特征曲线下面积,极端梯度提升法为0.82,支持向量机为0.85,多层感知器为0.76,朴素贝叶斯为0.81,逻辑回归为0.77。在区分有LVRR和无LVRR的NIDCM患者的纹理特征中,平均ECV值是最关键的因素(0.28±0.03对0.36±0.06,p<0.001)。使用支持向量机的机器学习分析可能有助于检测对GDMT耐药的高危NIDCM患者。平均ECV是纹理特征中最关键的特征。