Suppr超能文献

基于列线图的儿童血液成分对自闭症谱系障碍行为的风险预测:2018年至2019年在新疆的一项横断面研究。

Risk prediction of autism spectrum disorder behaviors among children based on blood elements by nomogram: A cross-sectional study in Xinjiang from 2018 to 2019.

作者信息

Zhang Yushan, Maimaiti Rena, Lou Shan, Abula Reyila, Abulaiti Adila, Kelimu Asimuguli

机构信息

Department of Child and Maternal Health, School of Public Health, Xinjiang Medical University, Urumqi 830011, PR China; Key Laboratory of Special Environment and Health Research in Xinjiang, Urumqi 830001, PR China.

Department of Child Health, Health Management Institute, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830001, PR China.

出版信息

J Affect Disord. 2022 Dec 1;318:1-6. doi: 10.1016/j.jad.2022.08.130. Epub 2022 Aug 31.

Abstract

BACKGROUND

Changes of toxic metals and essential elements during childhood may be the risk factor of autism spectrum disorder (ASD). This research established an accurate personalized predictive model of ASD behaviors among children by using the blood element detection index of children in Xinjiang, China.

METHODS

A total of 1537 children (240 ASD behavior children and 1297 non-ASD behavior children) aged 0-7 were collected from September 2018 to September 2019 in Urumqi Children's Hospital and the health management institute of Xinjiang Medical University. For measuring the copper (Cu), zinc (Zn), magnesium (Mg), iron (Fe), calcium (Ca), lead (Pb), and cadmium (Cd), 80 μL of blood was taken from each participant's ring finger. Univariate logistic regression analysis was used to select predictors, then the multivariate logistic regression was used to establish the predictive model. The discriminability, calibration and clinical validity of the model were evaluated by the receiver operating characteristic (ROC) curve, Hosmer-Lemeshow test and decision curve analysis (DCA).

RESULTS

Gender, concentrations of Pb, Ca and Zn in children's blood specimens were found to be the independent risk factors of ASD behaviors and were used to develop the nomogram model. The area under the ROC curve (AUC) in the development group (AUC = 0.778) and the validation group (AUC = 0.775) showed the model had discrimination ability. The calibration curve indicated the model was accurate, and the DCA proved its clinical application value.

CONCLUSION

The nomogram model can be used as a reliable tool to predict the risk of ASD behaviors among children.

摘要

背景

儿童期有毒金属和必需元素的变化可能是自闭症谱系障碍(ASD)的危险因素。本研究利用中国新疆儿童的血液元素检测指标,建立了准确的儿童ASD行为个性化预测模型。

方法

2018年9月至2019年9月,从乌鲁木齐儿童医院和新疆医科大学健康管理研究所收集了1537名0至7岁儿童(240名有ASD行为儿童和1297名无ASD行为儿童)。从每位参与者的无名指采集80μL血液,用于测量铜(Cu)、锌(Zn)、镁(Mg)、铁(Fe)、钙(Ca)、铅(Pb)和镉(Cd)。采用单因素逻辑回归分析选择预测因素,然后采用多因素逻辑回归建立预测模型。通过受试者工作特征(ROC)曲线、Hosmer-Lemeshow检验和决策曲线分析(DCA)对模型的判别能力、校准和临床有效性进行评估。

结果

发现儿童血液标本中的性别、Pb、Ca和Zn浓度是ASD行为的独立危险因素,并用于建立列线图模型。开发组(AUC = 0.778)和验证组(AUC = 0.775)的ROC曲线下面积(AUC)表明模型具有判别能力。校准曲线表明模型准确,DCA证明了其临床应用价值。

结论

列线图模型可作为预测儿童ASD行为风险的可靠工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验