Akina, Inc., West Lafayette, IN 47906, USA.
Akina, Inc., West Lafayette, IN 47906, USA; Purdue University, Biomedical Engineering and Pharmaceutics, West Lafayette, IN 47907, USA.
J Control Release. 2022 Oct;350:600-612. doi: 10.1016/j.jconrel.2022.08.052. Epub 2022 Sep 6.
Biodegradable poly(lactide-co-glycolide) (PLGA) microparticles have been used as long-acting injectable (LAI) drug delivery systems for more than three decades. Despite extensive use, few tools have been available to examine and compare the three-dimensional (3D) structures of microparticles prepared using different compositions and processing parameters, all collectively affecting drug release kinetics. Surface analysis after sequential semi-solvent impact (SASSI) was conducted by exposing PLGA microparticles to different semi-solvent in the liquid phase. The use of semi-solvent liquids presented practical experimental difficulties, particularly in observing the same microparticles before and after exposure to semi-solvents. The difficulties were overcome by using a new sequential semi-solvent vapor (SSV) method to examine the morphological changes of the same microparticles. The SASSI method based on SSV is called surface analysis of semi-solvent vapor impact (SAVI). Semi-solvents are the solvents that dissolve PLGA polymers depending on the polymer's lactide:glycolide (L:G) ratio. A sequence of semi-solvents was used to dissolve portions of PLGA microparticles in an L:G ratio-dependent manner, thus revealing different structures depending on how microparticles were prepared. Exposing PLGA microparticles to semi-solvents in the vapor phase demonstrated significant advantages over using semi-solvents in the liquid phase, such as in control of exposure conditions, access to imaging, decreasing the time for sequential exposure of semi-solvents, and using the same microparticles. The SSV approach for morphological analysis provides another tool to enhance our understanding of the microstructural arrangement of PLGA polymers. It will improve our comprehensive understanding of the factors controlling drug release from LAI formulations based on PLGA polymers.
可生物降解的聚(乳酸-共-乙醇酸)(PLGA)微球作为长效注射(LAI)药物递送系统已经使用了三十多年。尽管已经广泛使用,但很少有工具可以用来检查和比较使用不同组成和处理参数制备的微球的三维(3D)结构,所有这些因素都共同影响药物释放动力学。通过将 PLGA 微球暴露于不同的半溶剂液体来进行顺序半溶剂冲击(SASSI)后的表面分析。使用半溶剂液体存在实际的实验困难,特别是在观察暴露于半溶剂前后的相同微球时。通过使用新的顺序半溶剂蒸气(SSV)方法来检查相同微球的形态变化,克服了这些困难。基于 SSV 的 SASSI 方法称为半溶剂蒸气冲击的表面分析(SAVI)。半溶剂是根据聚合物的丙交酯:乙交酯(L:G)比溶解 PLGA 聚合物的溶剂。使用一系列半溶剂以依赖于 L:G 比的方式溶解 PLGA 微球的部分,从而根据微球的制备方式显示出不同的结构。将 PLGA 微球暴露于蒸气相中的半溶剂显示出与在液相中使用半溶剂相比具有显著优势,例如在暴露条件的控制、成像的可访问性、顺序暴露半溶剂的时间缩短以及使用相同的微球。用于形态分析的 SSV 方法为增强我们对 PLGA 聚合物微观结构排列的理解提供了另一种工具。它将提高我们对基于 PLGA 聚合物的 LAI 制剂中控制药物释放的因素的全面理解。