Predictive Analytics, TU Chemnitz.
Cognitive Computation Lab, University of Freiburg.
Top Cogn Sci. 2022 Oct;14(4):828-844. doi: 10.1111/tops.12624. Epub 2022 Sep 4.
For decades, a significant number of models explaining human syllogistic inference processes were developed. There is profound work fitting the models' parameters and analyzing each model's ability to account for the data in order to support or reject the underlying theories. However, the model parameters are rarely used to extract explanations and hypotheses for phenomena that go beyond the original scope of the models. In this work, we apply three state-of-the-art models, the probability heuristics model (PHM), mReasoner, and TransSet, to data from reasoning experiments where participants received feedback for their conclusions. We derived hypotheses based on the models' explanations for the feedback effect and put these to the test by conducting an experiment targeting the hypotheses. The work contributes to the field in three ways: (a) the feedback effect could be replicated and was shown to be a robust effect; (b) we demonstrate the use of the model parameters in order to derive new hypotheses; (c) we present possible explanations for the feedback effect based on existing theories.
几十年来,人们开发了许多解释人类三段论推理过程的模型。为了支持或反驳基础理论,人们深入研究了拟合模型参数和分析每个模型解释数据的能力。然而,这些模型参数很少被用于提取超出模型原始范围的现象的解释和假设。在这项工作中,我们应用了三种最先进的模型,即概率启发模型(PHM)、mReasoner 和 TransSet,对来自推理实验的数据进行分析,在这些实验中,参与者会收到对其结论的反馈。我们基于模型对反馈效应的解释提出了假设,并通过针对这些假设的实验对其进行了检验。这项工作在三个方面为该领域做出了贡献:(a)可以复制反馈效应,并证明它是一种稳健的效应;(b)我们展示了如何使用模型参数来推导出新的假设;(c)我们根据现有理论提出了反馈效应的可能解释。