Suppr超能文献

基于人工智能本体论框架的双语文档管理与检索。

Managing and Retrieving Bilingual Documents Using Artificial Intelligence-Based Ontological Framework.

机构信息

Department of Documents and Archive, Center of Documents and Administrative Communication, King Faisal University, P.O. Box 400, Al Hofuf 31982, Al-Ahsa, Saudi Arabia.

出版信息

Comput Intell Neurosci. 2022 Aug 25;2022:4636931. doi: 10.1155/2022/4636931. eCollection 2022.

Abstract

In recent times, artificial intelligence (AI) methods have been applied in document and content management to make decisions and improve the organization's functionalities. However, the lack of semantics and restricted metadata hinders the current document management technique from achieving a better outcome. E-Government activities demand a sophisticated approach to handle a large corpus of data and produce valuable insights. There is a lack of methods to manage and retrieve bilingual (Arabic and English) documents. Therefore, the study aims to develop an ontology-based AI framework for managing documents. A testbed is employed to simulate the existing and proposed framework for the performance evaluation. Initially, a data extraction methodology is utilized to extract Arabic and English content from 77 documents. Researchers developed a bilingual dictionary to teach the proposed information retrieval technique. A classifier based on the Naïve Bayes approach is designed to identify the documents' relations. Finally, a ranking approach based on link analysis is used for ranking the documents according to the users' queries. The benchmark evaluation metrics are applied to measure the performance of the proposed ontological framework. The findings suggest that the proposed framework offers supreme results and outperforms the existing framework.

摘要

近年来,人工智能 (AI) 方法已被应用于文档和内容管理中,以做出决策并提高组织的功能。然而,缺乏语义和受限的元数据阻碍了当前的文档管理技术取得更好的效果。电子政务活动需要一种复杂的方法来处理大量数据并生成有价值的见解。缺乏管理和检索双语(阿拉伯语和英语)文档的方法。因此,本研究旨在开发基于本体的人工智能框架来管理文档。使用测试台模拟现有和拟议的框架以进行性能评估。最初,利用数据提取方法从 77 份文件中提取阿拉伯语和英语内容。研究人员开发了一个双语词典来教授拟议的信息检索技术。基于朴素贝叶斯方法设计了一个分类器来识别文档的关系。最后,根据链接分析的排名方法用于根据用户查询对文档进行排名。应用基准评估指标来衡量所提出的本体框架的性能。研究结果表明,所提出的框架提供了卓越的结果,并优于现有的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0080/9436537/c79eba9af732/CIN2022-4636931.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验