Suppr超能文献

基于数据驱动的室内环境辅助设计智能系统。

A Data-Driven Intelligent System for Assistive Design of Interior Environments.

机构信息

College of Fine Arts, Guangdong Polytechnic Normal University, Guangzhou 510665, Guangdong, China.

出版信息

Comput Intell Neurosci. 2022 Aug 25;2022:8409495. doi: 10.1155/2022/8409495. eCollection 2022.

Abstract

This paper analyses the design of a healthy interior environment using big data intelligence. The application of big data intelligence in the design of healthy interior environments is necessary because the traditional interior design approaches consume a lot of energy and other problems. Benefited by its strong ability of computation and analytics, artificial intelligence can well improve a series of problems in the field of interior design. The proposal summarizes the sources, classifications, and expressions of behavioral data in interior spaces, carries out analysis and research on behavioral data from two aspects: display space and supermarket space, summarizes the interior methods based on behavioral data, and analyses the visualization application of behavioral data in different interior scenes, to explore the application value of behavioral data in interior design. In contrast to it is the unconscious behavioral response, the biggest characteristic of which is that it is regulated by the behavioral subject's physiological factors or habits of the behavior issuer. In this paper, we convert the layout recommendation problem of a space into a functional classification problem of segmented segments and household segments on a plane. The scene layout features are extracted by binary coding, the abstraction of the cross features between the vector segments is achieved by using a word embedding algorithm, the feature matrix is reduced in dimensionality, and finally, the segmentation network model and the layout network model are constructed, respectively, by using a bidirectional LSTM. The experiments show that the accuracy of the layout recommendation model in this paper is 98%, which can meet the demand for real-time online layouts.

摘要

本文利用大数据智能分析健康室内环境的设计。将大数据智能应用于健康室内环境设计是必要的,因为传统的室内设计方法会消耗大量的能源和其他问题。人工智能凭借其强大的计算和分析能力,可以很好地改善室内设计领域的一系列问题。该提案总结了室内空间中行为数据的来源、分类和表达,从展示空间和超市空间两个方面对行为数据进行分析和研究,总结了基于行为数据的室内方法,并分析了行为数据在不同室内场景中的可视化应用,以探索行为数据在室内设计中的应用价值。与之相对的是无意识的行为反应,其最大特点是受行为主体的生理因素或行为发出者习惯的调节。在本文中,我们将空间的布局推荐问题转化为平面上分段和家庭分段的功能分类问题。通过二进制编码提取场景布局特征,利用词嵌入算法实现向量段之间的交叉特征的抽象,降维特征矩阵,最后分别使用双向 LSTM 构建分段网络模型和布局网络模型。实验表明,本文提出的布局推荐模型的准确率达到 98%,可以满足实时在线布局的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3313/9436529/055f3b500ce6/CIN2022-8409495.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验