Suppr超能文献

基于多尺度X残差网络和机器视觉的烟丝品种分类

Tobacco shred varieties classification using Multi-Scale-X-ResNet network and machine vision.

作者信息

Niu Qunfeng, Liu Jiangpeng, Jin Yi, Chen Xia, Zhu Wenkui, Yuan Qiang

机构信息

School of Electrical Engineering, Henan University of Technology, Zhengzhou, China.

Anyang Cigarette Factory, China Tobacco Henan Industrial Co., Ltd., Anyang, China.

出版信息

Front Plant Sci. 2022 Aug 18;13:962664. doi: 10.3389/fpls.2022.962664. eCollection 2022.

Abstract

The primary task in calculating the tobacco shred blending ratio is identifying the four tobacco shred types: expanded tobacco silk, cut stem, tobacco silk, and reconstituted tobacco shred. The classification precision directly affects the subsequent determination of tobacco shred components. However, the tobacco shred types, especially expanded tobacco silk and tobacco silk, have no apparent differences in macro-scale characteristics. The tobacco shreds have small size and irregular shape characteristics, creating significant challenges in their recognition and classification based on machine vision. This study provides a complete set of solutions aimed at this problem for screening tobacco shred samples, taking images, image preprocessing, establishing datasets, and identifying types. A block threshold binarization method is used for image preprocessing. Parameter setting and method performance are researched to obtain the maximum number of complete samples with acceptable execution time. ResNet50 is used as the primary classification and recognition network structure. By increasing the multi-scale structure and optimizing the number of blocks and loss function, a new tobacco shred image classification method is proposed based on the MS-X-ResNet (Multi-Scale-X-ResNet) network. Specifically, the MS-ResNet network is obtained by fusing the multi-scale Stage 3 low-dimensional and Stage 4 high-dimensional features to reduce the overfitting risk. The number of blocks in Stages 1-4 are adjusted from the original 3:4:6:3 to 3:4:N:3 (A-ResNet) and 3:3:N:3 (B-ResNet) to obtain the X-ResNet network, which improves the model's classification performance with lower complexity. The focal loss function is selected to reduce the impact of identification difficulty for different sample types on the network and improve its performance. The experimental results show that the final classification accuracy of the network on a tobacco shred dataset is 96.56%. The image recognition of a single tobacco shred requires 103 ms, achieving high classification accuracy and efficiency. The image preprocessing and deep learning algorithms for tobacco shred classification and identification proposed in this study provide a new implementation approach for the actual production and quality detection of tobacco and a new way for online real-time type identification of other agricultural products.

摘要

计算烟丝混合比例的首要任务是识别四种烟丝类型

膨胀烟丝、梗丝、烟丝和再造烟丝。分类精度直接影响后续烟丝成分的测定。然而,烟丝类型,尤其是膨胀烟丝和烟丝,在宏观尺度特征上没有明显差异。烟丝尺寸小且形状不规则,这给基于机器视觉的识别和分类带来了巨大挑战。本研究针对筛选烟丝样本、拍摄图像、图像预处理、建立数据集和识别类型这一问题提供了一整套解决方案。采用块阈值二值化方法进行图像预处理。研究参数设置和方法性能,以在可接受的执行时间内获得最大数量的完整样本。使用ResNet50作为主要的分类和识别网络结构。通过增加多尺度结构并优化块数和损失函数,提出了一种基于MS-X-ResNet(多尺度-X-ResNet)网络的新型烟丝图像分类方法。具体而言,通过融合多尺度第3阶段低维特征和第4阶段高维特征获得MS-ResNet网络,以降低过拟合风险。将第1-4阶段的块数从原来的3:4:6:3调整为3:4:N:3(A-ResNet)和3:3:N:3(B-ResNet)以获得X-ResNet网络,从而以较低的复杂度提高模型的分类性能。选择焦点损失函数以减少不同样本类型的识别难度对网络的影响并提高其性能。实验结果表明,该网络在烟丝数据集上的最终分类准确率为96.56%。单个烟丝的图像识别需要103毫秒,实现了高分类准确率和效率。本研究提出的用于烟丝分类和识别的图像预处理及深度学习算法为烟草实际生产和质量检测提供了一种新的实现途径,也为其他农产品在线实时类型识别提供了新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f76/9433752/10b5cc4b4160/fpls-13-962664-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验