Hu Yue, Jiang Kaili, Liew Kim Meow, Zhang Lu-Wen
Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics & Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China.
Research (Wash D C). 2022 Aug 9;2022:9789657. doi: 10.34133/2022/9789657. eCollection 2022.
Durable dropwise condensation of saturated vapor is of significance for heat transfer and energy saving in extensive industrial applications. While numerous superhydrophobic surfaces can promote steam condensation, maintaining discrete microdroplets on surfaces without the formation of a flooded filmwise condensation at high subcooling remains challenging. Here, we report the development of carbon nanotube array-embedded hierarchical composite surfaces that enable ultra-durable dropwise condensation under a wide range of subcooling (Δ = 8 K-38 K), which outperforms existing nanowire surfaces. This performance stems from the combined strategies of the hydrophobic nanostructures that allow efficient surface renewal and the patterned hydrophilic micro frames that protect the nanostructures and also accelerate droplet nucleation. The synergistic effects of the composite design ensure sustained Cassie wetting mode and capillarity-governed droplet mobility (Bond number < 0.055) as well as the large specific volume of condensed droplets, which contributes to the enhanced condensation heat transfer. Our design provides a feasible alternative for efficiently transferring heat in a vapor environment with relatively high temperatures through the tunable multiscale morphology.
饱和蒸汽的持久滴状冷凝对于广泛的工业应用中的传热和节能具有重要意义。虽然许多超疏水表面可以促进蒸汽冷凝,但在高过冷度下在表面上保持离散的微滴而不形成淹没的膜状冷凝仍然具有挑战性。在这里,我们报告了嵌入碳纳米管阵列的分级复合表面的开发,该表面在广泛的过冷度(Δ = 8 K - 38 K)下能够实现超持久的滴状冷凝,其性能优于现有的纳米线表面。这种性能源于疏水性纳米结构的组合策略,这些策略允许有效的表面更新,以及图案化的亲水性微框架,这些微框架保护纳米结构并加速液滴成核。复合设计的协同效应确保了持续的卡西接触模式和由毛细作用控制的液滴流动性(邦德数 < 0.055)以及冷凝液滴的大比容,这有助于增强冷凝传热。我们的设计通过可调谐的多尺度形态为在相对高温的蒸汽环境中有效传热提供了一种可行的替代方案。