Suppr超能文献

为胆管癌研究选择合适的实验动物模型。

Selecting an Appropriate Experimental Animal Model for Cholangiocarcinoma Research.

作者信息

Li Man, Zhou Xueli, Wang Wei, Ji Baoan, Shao Yu, Du Qianyu, Yao Jinghao, Yang Yan

机构信息

Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.

Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA.

出版信息

J Clin Transl Hepatol. 2022 Aug 28;10(4):700-710. doi: 10.14218/JCTH.2021.00374. Epub 2022 Feb 11.

Abstract

Cholangiocarcinoma (CCA) is a highly aggressive biliary tree malignancy with intrahepatic and extra-hepatic subtypes that differ in molecular pathogeneses, epidemiology, clinical manifestations, treatment, and prognosis. The overall prognosis and patient survival remains poor because of lack of early diagnosis and effective treatments. Preclinical studies have become increasingly paramount as they are helpful not only for the study of the fundamental molecular mechanisms of CCA but also for developing novel and effective therapeutic approaches of this fatal cancer. Recent advancements in cell and molecular biology have made it possible to mimic the pathogenicity of human CCA in chemical-mechanical, infection-induced inflammatory, implantation, and genetically engineered animal models. This review is intended to help investigators understand the particular strengths and weaknesses of the currently used animal models of human CCA and their related modeling techniques to aid in the selection of the one that is the best for their research needs.

摘要

胆管癌(CCA)是一种侵袭性很强的胆管恶性肿瘤,有肝内和肝外亚型,它们在分子发病机制、流行病学、临床表现、治疗和预后方面存在差异。由于缺乏早期诊断和有效治疗方法,总体预后和患者生存率仍然很差。临床前研究变得越来越重要,因为它们不仅有助于研究CCA的基本分子机制,还有助于开发针对这种致命癌症的新型有效治疗方法。细胞和分子生物学的最新进展使得在化学机械、感染诱导的炎症、植入和基因工程动物模型中模拟人类CCA的致病性成为可能。这篇综述旨在帮助研究人员了解目前使用的人类CCA动物模型及其相关建模技术的特殊优缺点,以帮助选择最适合其研究需求的模型。

相似文献

1
Selecting an Appropriate Experimental Animal Model for Cholangiocarcinoma Research.
J Clin Transl Hepatol. 2022 Aug 28;10(4):700-710. doi: 10.14218/JCTH.2021.00374. Epub 2022 Feb 11.
2
Animal models of cholangiocarcinoma.
Curr Opin Gastroenterol. 2013 May;29(3):312-8. doi: 10.1097/MOG.0b013e32835d6a3e.
3
Current Advances in Basic and Translational Research of Cholangiocarcinoma.
Cancers (Basel). 2021 Jul 1;13(13):3307. doi: 10.3390/cancers13133307.
4
Genetic Mouse Models as In Vivo Tools for Cholangiocarcinoma Research.
Cancers (Basel). 2019 Nov 26;11(12):1868. doi: 10.3390/cancers11121868.
6
Developing models of cholangiocarcinoma to close the translational gap in cancer research.
Expert Opin Investig Drugs. 2021 Apr;30(4):439-450. doi: 10.1080/13543784.2021.1882993. Epub 2021 Feb 14.
7
Cholangiocarcinoma: increasing burden of classifications.
Hepatobiliary Surg Nutr. 2013 Oct;2(5):272-80. doi: 10.3978/j.issn.2304-3881.2013.10.02.
8
Animal models of cholangiocarcinoma: What they teach us about the human disease.
Clin Res Hepatol Gastroenterol. 2018 Oct;42(5):403-415. doi: 10.1016/j.clinre.2018.04.008. Epub 2018 May 9.
9
Cholangiocarcinoma in patients with primary sclerosing cholangitis.
Curr Opin Gastroenterol. 2020 Mar;36(2):77-84. doi: 10.1097/MOG.0000000000000616.
10
The importance of preclinical models in cholangiocarcinoma.
Eur J Surg Oncol. 2025 Feb;51(2):108304. doi: 10.1016/j.ejso.2024.108304. Epub 2024 Mar 27.

引用本文的文献

1
Metformin dampens the progression of cholangiofibrosis induced by thioacetamide using deep learning.
Heliyon. 2024 Sep 7;10(18):e37347. doi: 10.1016/j.heliyon.2024.e37347. eCollection 2024 Sep 30.
2
Oncogenic plasmid DNA and liver injury agent dictates liver cancer development in a mouse model.
Clin Sci (Lond). 2024 Oct 2;138(19):1227-1248. doi: 10.1042/CS20240560.
3
Characterization of a Syngeneic Orthotopic Model of Cholangiocarcinoma by [F]FDG-PET/MRI.
Cancers (Basel). 2024 Jul 19;16(14):2591. doi: 10.3390/cancers16142591.
4
Establishment and characterization of the PDAC-X3 cell line: a novel Chinese-origin pancreatic ductal adenocarcinoma cell line.
Hum Cell. 2024 Sep;37(5):1578-1592. doi: 10.1007/s13577-024-01100-y. Epub 2024 Jul 16.
5
Pathological polyploidy and liver repair failure in RAD51-deficient mice.
Hepatology. 2025 Feb 1;81(2):393-395. doi: 10.1097/HEP.0000000000000871. Epub 2024 Mar 28.
6
Establishment and Characterization of a New Intrahepatic Cholangiocarcinoma Cell Line, ICC-X2.
World J Oncol. 2024 Feb;15(1):114-125. doi: 10.14740/wjon1757. Epub 2024 Jan 10.
7
Establishment and characterization of a new human ampullary carcinoma cell line, DPC-X1.
World J Gastroenterol. 2023 May 7;29(17):2642-2656. doi: 10.3748/wjg.v29.i17.2642.

本文引用的文献

3
Genetic Screens Identify a Context-Specific PI3K/p27Kip1 Node Driving Extrahepatic Biliary Cancer.
Cancer Discov. 2021 Dec 1;11(12):3158-3177. doi: 10.1158/2159-8290.CD-21-0209.
5
Recent Advances in Implantation-Based Genetic Modeling of Biliary Carcinogenesis in Mice.
Cancers (Basel). 2021 May 11;13(10):2292. doi: 10.3390/cancers13102292.
6
Focal adhesion kinase (FAK) promotes cholangiocarcinoma development and progression via YAP activation.
J Hepatol. 2021 Oct;75(4):888-899. doi: 10.1016/j.jhep.2021.05.018. Epub 2021 May 28.
7
Practical considerations in screening for genetic alterations in cholangiocarcinoma.
Ann Oncol. 2021 Sep;32(9):1111-1126. doi: 10.1016/j.annonc.2021.04.012. Epub 2021 Apr 28.
8
A Mouse Model of Cholangiocarcinoma Uncovers a Role for Tensin-4 in Tumor Progression.
Hepatology. 2021 Sep;74(3):1445-1460. doi: 10.1002/hep.31834.
10
NAFLD exacerbates cholangitis and promotes cholangiocellular carcinoma in mice.
Cancer Sci. 2021 Apr;112(4):1471-1480. doi: 10.1111/cas.14828. Epub 2021 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验