BCAM - Basque Center for Applied Mathematics, Bilbao, Spain.
IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
Biometrics. 2023 Sep;79(3):1972-1985. doi: 10.1111/biom.13755. Epub 2022 Oct 21.
The receptive field (RF) of a visual neuron is the region of the space that elicits neuronal responses. It can be mapped using different techniques that allow inferring its spatial and temporal properties. Raw RF maps (RFmaps) are usually noisy, making it difficult to obtain and study important features of the RF. A possible solution is to smooth them using P-splines. Yet, raw RFmaps are characterized by sharp transitions in both space and time. Their analysis thus asks for spatiotemporal adaptive P-spline models, where smoothness can be locally adapted to the data. However, the literature lacks proposals for adaptive P-splines in more than two dimensions. Furthermore, the extra flexibility afforded by adaptive P-spline models is obtained at the cost of a high computational burden, especially in a multidimensional setting. To fill these gaps, this work presents a novel anisotropic locally adaptive P-spline model in two (e.g., space) and three (space and time) dimensions. Estimation is based on the recently proposed SOP (Separation of Overlapping Precision matrices) method, which provides the speed we look for. Besides the spatiotemporal analysis of the neuronal activity data that motivated this work, the practical performance of the proposal is evaluated through simulations, and comparisons with alternative methods are reported.
感受野(RF)是视觉神经元能够引发神经元反应的空间区域。可以使用不同的技术来绘制 RF,这些技术可以推断出它的空间和时间特性。原始 RF 图(RFmaps)通常噪声较大,因此难以获得和研究 RF 的重要特征。一种可能的解决方案是使用 P 样条对其进行平滑处理。然而,原始 RFmaps 在空间和时间上都有明显的突变。因此,它们的分析需要使用时空自适应 P 样条模型,其中平滑度可以根据数据进行局部调整。然而,文献中缺乏用于二维以上的自适应 P 样条的建议。此外,自适应 P 样条模型提供的额外灵活性是以高计算负担为代价的,尤其是在多维设置中。为了填补这些空白,这项工作提出了一种新的二维(例如空间)和三维(空间和时间)的各向异性局部自适应 P 样条模型。估计基于最近提出的 SOP(重叠精度矩阵的分离)方法,该方法提供了我们所追求的速度。除了对神经元活动数据的时空分析外,还通过模拟评估了该方法的实际性能,并报告了与替代方法的比较。