Zhang Zheng-Feng, Su Ming-Der
Department of Applied Chemistry, National Chiayi University, Chiayi, Taiwan.
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan.
J Comput Chem. 2022 Oct 5;43(26):1783-1792. doi: 10.1002/jcc.26980. Epub 2022 Sep 5.
The trapping reactions of carbene analogs G14F (G14 = group 14 element) by the benzene-bridged B/P-Rea frustrated Lewis pair (FLPs) molecule are studied using density functional theory (B3LYP-D3(BJ)/def2-TZVP). Our theoretical investigations predict that only the CF intermediate rather than other heavy carbene analogs can be trapped by the B/P-Rea FLP-type molecule. Energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) analyses indicate that the bonding nature of the G14F catching reactions by the B/P-Rea FLP-type molecule is a donor-acceptor (singlet-singlet) interaction rather than an electron-sharing (triplet-triplet) interaction. Moreover, EDA-NOCV and frontier molecular orbital (FMO) theory findings strongly suggest that the lone pair (LP) (P) → vacant p-π-orbital (G14F ) interaction rather than the empty σ-orbital (B) ← sp -σ-orbital (G14F ) interaction plays a predominant role in establishing its bonding condition during the G14F trapping reaction with the B/P-Rea FLP-associated molecule. Our activation strain model findings reveal that the atomic radius of the G14 element of G14F plays a key role in determining the activation barrier of the G14F trapping reactions by the benzene-bridged B/P-Rea FLP. The valence bond state correlation diagram (VBSCD) model developed by Shaik is used to rationalize the calculated results. The VBSCD findings demonstrate that in the present trapping reactions, the singlet triplet splitting of G14F plays a significant role in influencing its reaction barrier and reaction enthalpy. Our theoretical results demonstrate that the relationship between the geometrical parameters of the transition states and the corresponding reaction free energy barriers agrees well with the findings based on the Hammond postulate.
采用密度泛函理论(B3LYP-D3(BJ)/def2-TZVP)研究了苯桥联的B/P-Rea受阻路易斯对(FLP)分子对卡宾类似物G14F(G14 = 第14族元素)的捕获反应。我们的理论研究预测,只有CF中间体而非其他重卡宾类似物能够被B/P-Rea FLP型分子捕获。能量分解分析-化学价自然轨道(EDA-NOCV)分析表明,B/P-Rea FLP型分子捕获G14F的反应的键合本质是供体-受体(单重态-单重态)相互作用,而非电子共享(三重态-三重态)相互作用。此外,EDA-NOCV和前线分子轨道(FMO)理论结果强烈表明,孤对电子(LP)(P)→空的p-π轨道(G14F)相互作用而非空的σ轨道(B)←sp-σ轨道(G14F)相互作用在G14F与B/P-Rea FLP相关分子的捕获反应中建立其键合条件时起主要作用。我们的活化应变模型结果表明,G14F中G14元素的原子半径在决定苯桥联的B/P-Rea FLP捕获G14F反应的活化能垒方面起关键作用。使用Shaik开发的价键态相关图(VBSCD)模型来合理化计算结果。VBSCD结果表明,在当前的捕获反应中,G14F的单重态-三重态分裂在影响其反应能垒和反应焓方面起重要作用。我们的理论结果表明,过渡态的几何参数与相应反应自由能垒之间的关系与基于哈蒙德假设的结果吻合良好。