Houria Latifa, Belkhamsa Noureddine, Cherfa Assia, Cherfa Yazid
LASICOM Laboratory, Department of Electronics, Faculty of Technology, University of Blida 1, Blida, Algeria.
Phys Eng Sci Med. 2022 Dec;45(4):1043-1053. doi: 10.1007/s13246-022-01165-9. Epub 2022 Sep 5.
Diffusion tensor imaging (DTI) is a new technology in magnetic resonance imaging, which allows us to observe the insightful structure of the human body in vivo and non-invasively. It identifies the microstructure of white matter (WM) connectivity by estimating the movement of water molecules at each voxel. This makes possible the identification of the damage to WM integrity caused by Alzheimer's disease (AD) at its early stage, called mild cognitive impairment (MCI). Furthermore, the brain's gray matter (GM) atrophy characterizes the main structural changes in AD, which can be sensitively detected by structural MRI (sMRI) modality. In this research, we aimed to classify the Alzheimer's diseases stages by developing a novel multi-modality MRI (DTI and sMRI) fusion strategy to detect WM alterations and GM atrophy in AD patients. The latter is based on a 2-dimensional deep convolutional neural network (CNN) features extractor and a support vector machine (SVM) classifier. The fusion framework consists of merging features extracted from DTI scalar metrics [(fractional anisotropy (FA) and mean diffusivity (MD)], and GM using 2D-CNN and feeding them to SVM to classify AD versus cognitively normal (CN), AD versus MCI, and MCI versus CN. Our novel multimodal AD method demonstrates a superior performance with an accuracy of 99.79%, 99.6%, and 97.00% for AD/CN, AD/MCI, and MCI/CN respectively.
扩散张量成像(DTI)是磁共振成像中的一项新技术,它使我们能够在体内非侵入性地观察人体的精细结构。它通过估计每个体素处水分子的运动来识别白质(WM)连通性的微观结构。这使得在阿尔茨海默病(AD)的早期阶段,即轻度认知障碍(MCI)阶段,识别由其导致的WM完整性损伤成为可能。此外,脑灰质(GM)萎缩是AD的主要结构变化特征,可通过结构磁共振成像(sMRI)模态灵敏地检测到。在本研究中,我们旨在通过开发一种新颖的多模态磁共振成像(DTI和sMRI)融合策略来对阿尔茨海默病阶段进行分类,以检测AD患者的WM改变和GM萎缩。后者基于二维深度卷积神经网络(CNN)特征提取器和支持向量机(SVM)分类器。融合框架包括合并从DTI标量指标[分数各向异性(FA)和平均扩散率(MD)]以及GM中提取的特征,使用二维卷积神经网络,并将它们输入支持向量机以对AD与认知正常(CN)、AD与MCI以及MCI与CN进行分类。我们新颖的多模态AD方法分别在AD/CN、AD/MCI和MCI/CN分类中展现出卓越的性能,准确率分别为99.79%、99.6%和97.00%。