Suppr超能文献

前瞻性运动校正在肾 MRI 中的应用。

Prospective motion correction in kidney MRI using FID navigators.

机构信息

Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA.

Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Magn Reson Med. 2023 Jan;89(1):276-285. doi: 10.1002/mrm.29424. Epub 2022 Sep 5.

Abstract

PURPOSE

Abdominal MRI scans may require breath-holding to prevent image quality degradation, which can be challenging for patients, especially children. In this study, we evaluate whether FID navigators can be used to measure and correct for motion prospectively, in real-time.

METHODS

FID navigators were inserted into a 3D radial sequence with stack-of-stars sampling. MRI experiments were conducted on 6 healthy volunteers. A calibration scan was first acquired to create a linear motion model that estimates the kidney displacement due to respiration from the FID navigator signal. This model was then applied to predict and prospectively correct for motion in real time during deep and continuous deep breathing scans. Resultant images acquired with the proposed technique were compared with those acquired without motion correction. Dice scores were calculated between inhale/exhale motion states. Furthermore, images acquired using the proposed technique were compared with images from extra-dimensional golden-angle radial sparse parallel, a retrospective motion state binning technique.

RESULTS

Images reconstructed for each motion state show that the kidneys' position could be accurately tracked and corrected with the proposed method. The mean of Dice scores computed between the motion states were improved from 0.93 to 0.96 using the proposed technique. Depiction of the kidneys was improved in the combined images of all motion states. Comparing results of the proposed technique and extra-dimensional golden-angle radial sparse parallel, high-quality images can be reconstructed from a fraction of spokes using the proposed method.

CONCLUSION

The proposed technique reduces blurriness and motion artifacts in kidney imaging by prospectively correcting their position both in-plane and through-slice.

摘要

目的

腹部 MRI 扫描可能需要屏气以防止图像质量下降,这对于患者,尤其是儿童来说具有挑战性。在本研究中,我们评估 FID 导航仪是否可以用于前瞻性地实时测量和校正运动。

方法

FID 导航仪插入到具有堆叠星采样的 3D 径向序列中。在 6 名健康志愿者中进行了 MRI 实验。首先采集校准扫描,以创建线性运动模型,该模型从 FID 导航器信号估计呼吸引起的肾脏位移。然后,将该模型应用于在深吸气和深连续呼吸扫描期间实时预测和前瞻性校正运动。使用所提出的技术获得的结果图像与未进行运动校正的图像进行比较。在吸气/呼气运动状态之间计算了 Dice 评分。此外,还将使用所提出的技术获得的图像与来自额外维度黄金角度径向稀疏平行的图像进行了比较,这是一种回顾性运动状态分箱技术。

结果

对于每个运动状态重建的图像表明,该方法可以准确地跟踪和校正肾脏的位置。使用所提出的技术,计算的运动状态之间的 Dice 评分均值从 0.93 提高到 0.96。在所有运动状态的组合图像中,肾脏的描绘得到了改善。将所提出的技术和额外维度黄金角度径向稀疏平行的结果进行比较,使用所提出的方法可以从一小部分辐条重建高质量的图像。

结论

该技术通过在平面内和切片内前瞻性地校正其位置,减少了肾脏成像中的模糊和运动伪影。

相似文献

1
Prospective motion correction in kidney MRI using FID navigators.
Magn Reson Med. 2023 Jan;89(1):276-285. doi: 10.1002/mrm.29424. Epub 2022 Sep 5.
2
Single-spoke binning: Reducing motion artifacts in abdominal radial stack-of-stars imaging.
Magn Reson Med. 2023 May;89(5):1931-1944. doi: 10.1002/mrm.29576. Epub 2023 Jan 3.
3
Abdominal motion tracking with free-breathing XD-GRASP acquisitions using spatio-temporal geodesic trajectories.
Med Biol Eng Comput. 2022 Feb;60(2):583-598. doi: 10.1007/s11517-021-02477-w. Epub 2022 Jan 14.
4
Rapid motion estimation and correction using self-encoded FID navigators in 3D radial MRI.
Magn Reson Med. 2024 Mar;91(3):1057-1066. doi: 10.1002/mrm.29899. Epub 2023 Nov 6.
8
Respiratory motion compensation using data binning in dynamic contrast enhanced golden-angle radial MRI.
Magn Reson Imaging. 2020 Jul;70:115-125. doi: 10.1016/j.mri.2020.03.011. Epub 2020 Apr 28.

引用本文的文献

1
A Multi-view Open-access Dataset of Paired Knee MRI for Motion Artifact Removal.
Sci Data. 2025 Jul 9;12(1):1173. doi: 10.1038/s41597-025-05439-1.
2
Ultrafast and robust mapping using optimized single-shot multi-echo planar imaging with alternating blips.
Magn Reson Med. 2025 Aug;94(2):530-540. doi: 10.1002/mrm.30516. Epub 2025 Apr 28.

本文引用的文献

1
Accelerated k-space shift calibration for free-breathing stack-of-radial MRI quantification of liver fat and .
Magn Reson Med. 2022 Jan;87(1):281-291. doi: 10.1002/mrm.28981. Epub 2021 Aug 19.
2
Bulk motion-compensated DCE-MRI for functional imaging of kidneys in newborns.
J Magn Reson Imaging. 2020 Jul;52(1):207-216. doi: 10.1002/jmri.27021. Epub 2019 Dec 14.
3
AUTOMATIC RENAL SEGMENTATION IN DCE-MRI USING CONVOLUTIONAL NEURAL NETWORKS.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1534-1537. doi: 10.1109/ISBI.2018.8363865. Epub 2018 May 24.
4
Head motion measurement and correction using FID navigators.
Magn Reson Med. 2019 Jan;81(1):258-274. doi: 10.1002/mrm.27381. Epub 2018 Jul 29.
5
Adaptive bulk motion exclusion for improved robustness of abdominal magnetic resonance imaging.
NMR Biomed. 2017 Nov;30(11). doi: 10.1002/nbm.3830. Epub 2017 Sep 8.
6
Accelerated motion corrected three-dimensional abdominal MRI using total variation regularized SENSE reconstruction.
Magn Reson Med. 2016 Apr;75(4):1484-98. doi: 10.1002/mrm.25708. Epub 2015 May 21.
7
XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing.
Magn Reson Med. 2016 Feb;75(2):775-88. doi: 10.1002/mrm.25665. Epub 2015 Mar 25.
8
Reduction of motion artifacts in carotid MRI using free-induction decay navigators.
J Magn Reson Imaging. 2014 Jul;40(1):214-20. doi: 10.1002/jmri.24389. Epub 2013 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验