Suppr超能文献

基于卷积神经网络的动态对比增强磁共振成像中的自动肾脏分割

AUTOMATIC RENAL SEGMENTATION IN DCE-MRI USING CONVOLUTIONAL NEURAL NETWORKS.

作者信息

Haghighi Marzieh, Warfield Simon K, Kurugol Sila

机构信息

Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115.

Radiology Department, Boston Childrens Hospital; and Harvard Medical School, Boston MA 02115.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1534-1537. doi: 10.1109/ISBI.2018.8363865. Epub 2018 May 24.

Abstract

Kidney function evaluation using dynamic contrast-enhanced MRI (DCE-MRI) images could help in diagnosis and treatment of kidney diseases of children. Automatic segmentation of renal parenchyma is an important step in this process. In this paper, we propose a time and memory efficient fully automated segmentation method which achieves high segmentation accuracy with running time in the order of seconds in both normal kidneys and kidneys with hydronephrosis. The proposed method is based on a cascaded application of two 3D convolutional neural networks that employs spatial and temporal information at the same time in order to learn the tasks of localization and segmentation of kidneys, respectively. Segmentation performance is evaluated on both normal and abnormal kidneys with varying levels of hydronephrosis. We achieved a mean dice coefficient of 91.4 and 83.6 for normal and abnormal kidneys of pediatric patients, respectively.

摘要

使用动态对比增强磁共振成像(DCE-MRI)图像进行肾功能评估有助于儿童肾脏疾病的诊断和治疗。肾实质的自动分割是这一过程中的重要步骤。在本文中,我们提出了一种高效省时且节省内存的全自动分割方法,该方法在正常肾脏和肾积水肾脏中均能以秒级的运行时间实现较高的分割精度。所提出的方法基于两个3D卷积神经网络的级联应用,这两个网络同时利用空间和时间信息,分别学习肾脏的定位和分割任务。在具有不同肾积水程度的正常和异常肾脏上评估分割性能。我们分别在儿科患者的正常和异常肾脏上实现了平均骰子系数为91.4和83.6。

相似文献

1
AUTOMATIC RENAL SEGMENTATION IN DCE-MRI USING CONVOLUTIONAL NEURAL NETWORKS.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1534-1537. doi: 10.1109/ISBI.2018.8363865. Epub 2018 May 24.
6
A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy.
Med Phys. 2018 Nov;45(11):5129-5137. doi: 10.1002/mp.13221. Epub 2018 Oct 28.
7
Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
Int J Comput Assist Radiol Surg. 2017 Mar;12(3):399-411. doi: 10.1007/s11548-016-1501-5. Epub 2016 Nov 24.
8
Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.
Med Image Anal. 2018 Apr;45:94-107. doi: 10.1016/j.media.2018.01.006. Epub 2018 Feb 1.
9
Harnessing Artificial Intelligence for Enhanced Renal Analysis: Automated Detection of Hydronephrosis and Precise Kidney Segmentation.
Eur Urol Open Sci. 2024 Feb 22;62:19-25. doi: 10.1016/j.euros.2024.01.017. eCollection 2024 Apr.
10
Multiregion segmentation of bladder cancer structures in MRI with progressive dilated convolutional networks.
Med Phys. 2018 Dec;45(12):5482-5493. doi: 10.1002/mp.13240. Epub 2018 Nov 8.

引用本文的文献

1
CNN-Based Kidney Segmentation Using a Modified CLAHE Algorithm.
Sensors (Basel). 2024 Dec 2;24(23):7703. doi: 10.3390/s24237703.
5
Deep-learning-based ensemble method for fully automated detection of renal masses on magnetic resonance images.
J Med Imaging (Bellingham). 2023 Mar;10(2):024501. doi: 10.1117/1.JMI.10.2.024501. Epub 2023 Mar 20.
6
Validation of automatically measured T1 map cortico-medullary difference (ΔT1) for eGFR and fibrosis assessment in allograft kidneys.
PLoS One. 2023 Feb 15;18(2):e0277277. doi: 10.1371/journal.pone.0277277. eCollection 2023.
10
Prospective motion correction in kidney MRI using FID navigators.
Magn Reson Med. 2023 Jan;89(1):276-285. doi: 10.1002/mrm.29424. Epub 2022 Sep 5.

本文引用的文献

1
Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging.
IEEE Trans Med Imaging. 2017 Nov;36(11):2319-2330. doi: 10.1109/TMI.2017.2721362. Epub 2017 Jun 28.
2
Automatic renal segmentation for MR urography using 3D-GrabCut and random forests.
Magn Reson Med. 2018 Mar;79(3):1696-1707. doi: 10.1002/mrm.26806. Epub 2017 Jun 27.
3
Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation.
Med Image Anal. 2017 Feb;36:61-78. doi: 10.1016/j.media.2016.10.004. Epub 2016 Oct 29.
4
Renal compartment segmentation in DCE-MRI images.
Med Image Anal. 2016 Aug;32:269-80. doi: 10.1016/j.media.2016.05.006. Epub 2016 May 16.
6
Functional analysis in MR urography - made simple.
Pediatr Radiol. 2010 Feb;40(2):182-99. doi: 10.1007/s00247-009-1458-4. Epub 2009 Dec 12.
7
Assessment of 3D DCE-MRI of the kidneys using non-rigid image registration and segmentation of voxel time courses.
Comput Med Imaging Graph. 2009 Apr;33(3):171-81. doi: 10.1016/j.compmedimag.2008.11.004. Epub 2009 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验