Suppr超能文献

肌苷酸环化水解酶/腺嘌呤琥珀酸裂解酶(ATIC)是新型隐球菌从头合成嘌呤和感染所必需的。

AICAR transformylase/IMP cyclohydrolase (ATIC) is essential for de novo purine biosynthesis and infection by Cryptococcus neoformans.

机构信息

Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia; School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia.

School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia; Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia.

出版信息

J Biol Chem. 2022 Oct;298(10):102453. doi: 10.1016/j.jbc.2022.102453. Epub 2022 Sep 5.

Abstract

The fungal pathogen Cryptococcus neoformans is a leading cause of meningoencephalitis in the immunocompromised. As current antifungal treatments are toxic to the host, costly, limited in their efficacy, and associated with drug resistance, there is an urgent need to identify vulnerabilities in fungal physiology to accelerate antifungal discovery efforts. Rational drug design was pioneered in de novo purine biosynthesis as the end products of the pathway, ATP and GTP, are essential for replication, transcription, and energy metabolism, and the same rationale applies when considering the pathway as an antifungal target. Here, we describe the identification and characterization of C. neoformans 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/5'-inosine monophosphate cyclohydrolase (ATIC), a bifunctional enzyme that catalyzes the final two enzymatic steps in the formation of the first purine base inosine monophosphate. We demonstrate that mutants lacking the ATIC-encoding ADE16 gene are adenine and histidine auxotrophs that are unable to establish an infection in a murine model of virulence. In addition, our assays employing recombinantly expressed and purified C. neoformans ATIC enzyme revealed K values for its substrates AICAR and 5-formyl-AICAR are 8-fold and 20-fold higher, respectively, than in the human ortholog. Subsequently, we performed crystallographic studies that enabled the determination of the first fungal ATIC protein structure, revealing a key serine-to-tyrosine substitution in the active site, which has the potential to assist the design of fungus-specific inhibitors. Overall, our results validate ATIC as a promising antifungal drug target.

摘要

新型隐球菌是免疫功能低下者脑膜脑炎的主要病原体。由于目前的抗真菌治疗对宿主有毒性、昂贵、疗效有限且与耐药性相关,因此迫切需要确定真菌生理学中的脆弱性,以加速抗真菌药物的发现。从头嘌呤生物合成中率先进行了合理药物设计,因为该途径的终产物 ATP 和 GTP 对于复制、转录和能量代谢都是必不可少的,当考虑该途径作为抗真菌靶标时,同样的原理也适用。在这里,我们描述了新型隐球菌 5-氨基咪唑-4-甲酰胺核糖核苷酸(AICAR)转氨甲酰酶/5′-次黄嘌呤单磷酸环化水解酶(ATIC)的鉴定和表征,这是一种双功能酶,催化形成第一个嘌呤碱基次黄苷酸的最后两个酶促步骤。我们证明,缺乏编码ATIC 的 ADE16 基因的突变体是腺嘌呤和组氨酸营养缺陷型,无法在小鼠毒力模型中建立感染。此外,我们使用重组表达和纯化的新型隐球菌 ATIC 酶进行的测定表明,其底物 AICAR 和 5-甲酰基-AICAR 的 K 值分别高 8 倍和 20 倍,而在人类同源物中则低 8 倍和 20 倍。随后,我们进行了晶体学研究,确定了第一个真菌 ATIC 蛋白结构,揭示了活性位点中关键丝氨酸到酪氨酸的取代,这有可能有助于设计真菌特异性抑制剂。总的来说,我们的研究结果验证了 ATIC 作为有前途的抗真菌药物靶标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1271/9525906/97171359faa2/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验