CO(2) Research Centre (CO2RES), Universiti Teknologi PETRONAS, Tronoh, 32610, Perak, Malaysia; Department of Chemical Engineering, Universiti Teknologi of PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia.
CO(2) Research Centre (CO2RES), Universiti Teknologi PETRONAS, Tronoh, 32610, Perak, Malaysia.
Chemosphere. 2022 Dec;308(Pt 1):136181. doi: 10.1016/j.chemosphere.2022.136181. Epub 2022 Sep 2.
In this experimental and modelling study, Diethylene glycol (DEG) and Glycine (Gly) mixtures are introduced to hinder carbon dioxide hydrate formation by pushing the phase boundaries on the lower temperature side. The mixture of DEG and Gly with the ratio of 1:1 is experimented at 15, 10, and 5 wt% concentrations and the pressure vary from 2.5 to 4.0 MPa. The T-cycle method is employed to assess the effect of the studied blends on the CO hydrate by evaluating the hydrate dissociation temperature. Varied compositions of pure DEG and Gly as well as their mixtures are used to compute the synergistic effect. The studied system's thermodynamic hydrate inhibition (THI) influence is a concentration-driven phenomenon. Higher concentration can shift the hydrate liquid vapor equilibrium (HLVE) curve to lower temperatures and high-pressure regions. The outcomes depict that mixture of DEG and Gly at 15 wt%. Shows comparatively better results than the mixtures at 5 and 10 wt%, respectively. The obtained 10 wt% mixture results have also been compared with the conventional hydrate inhibitors and other THIs systems and provide a significant hydrate average suppression (ΔT) of 2.4 K. Furthermore, the freezing point-based Dickens and Quint Hunt model was also applied to predict the HLVE data of CO hydrates and satisfactory agreement found with maximum mean absolute error (MAE) of 0.498 K. A better inhibitory performance was seen when diethylene glycol and glycine were combined, demonstrating the potential of amino acids as synergistic inhibitors in the exploitation of hydrates, transportation of oil and gas, and flow assurance.
在这项实验和建模研究中,引入了二甘醇 (DEG) 和甘氨酸 (Gly) 混合物,通过将相边界推向低温侧来阻碍二氧化碳水合物的形成。在 15、10 和 5 wt% 的浓度下,实验了 1:1 比例的 DEG 和 Gly 混合物,压力范围为 2.5 至 4.0 MPa。采用 T 循环法通过评估水合物分解温度来评估研究混合物对 CO 水合物的影响。使用不同组成的纯 DEG 和 Gly 及其混合物来计算协同效应。研究系统的热力学水合物抑制 (THI) 影响是浓度驱动的现象。较高的浓度可以将水合物液-汽平衡 (HLVE) 曲线移至较低的温度和高压区域。结果表明,15 wt% 的 DEG 和 Gly 混合物的效果优于 5 和 10 wt% 的混合物。还将获得的 10 wt%混合物结果与传统水合物抑制剂和其他 THI 系统进行了比较,并提供了 2.4 K 的显著水合物平均抑制 (ΔT)。此外,还应用了基于冰点的 Dickens 和 Quint Hunt 模型来预测 CO 水合物的 HLVE 数据,并发现最大平均绝对误差 (MAE) 为 0.498 K,具有令人满意的一致性。当二甘醇和甘氨酸结合使用时,抑制性能更好,这表明氨基酸作为协同抑制剂在水合物的开发、油气的输送和流动保障方面具有潜力。