School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
Free Radic Biol Med. 2022 Oct;191:191-202. doi: 10.1016/j.freeradbiomed.2022.08.036. Epub 2022 Sep 3.
Hydrogen peroxide is an aerobic metabolite playing a central role in redox signaling and oxidative stress. HO could activate redox sensitive transcription factors, such as Nrf2, AP-1 and NF-κB by different manners. In some cells, treatment with non-lethal levels of HO induces rapid activation of Nrf2, which upregulates expression of a set of genes involved in glutathione (GSH) synthesis and defenses against oxidative damage. It depends on two steps, the rapid translational activation of Nrf2 and facilitation of Nrf2 nuclear translocation. We review the molecular mechanisms by which HO induces nuclear translocation of Nrf2 in cultured cells by highlighting the role of neutral sphingomyelinase 2 (nSMase2), a GSH sensor. HO enters cells through aquaporin channels in the plasma membrane and is rapidly reduced to HO by GSH peroxidases to consume cellular GSH, resulting in nSMase2 activation to generate ceramide. HO also activates p38 MAP kinase, which enhances transfer of nSMase2 from perinuclear regions to plasma membrane lipid rafts to accelerate ceramide generation. Low levels of ceramide activate PKCζ, which then activates casein kinase 2 (CK2). These protein kinases are able to phosphorylate Nrf2 to stabilize and activate it. Notably, Nrf2 also binds to caveolin-1 (Cav1), which protects Nrf2 from Keap1-mediated degradation and limits Nrf2 nuclear translocation. We propose that Cav1serves as a signaling hub for the control of HO-mediated phosphorylation of Nrf2 by kinases, which results in release of Nrf2 from Cav1 to facilitate nuclear translocation. In summary, HO induces GSH depletion which is recovered by Nrf2 activation dependent on p38/nSMase2/ceramide signaling.
过氧化氢是一种需氧代谢物,在氧化还原信号和氧化应激中发挥核心作用。HO 可以通过不同方式激活氧化还原敏感转录因子,如 Nrf2、AP-1 和 NF-κB。在某些细胞中,用非致死水平的 HO 处理会迅速激活 Nrf2,从而上调参与谷胱甘肽 (GSH) 合成和抗氧化损伤防御的一组基因的表达。这依赖于两个步骤,即 Nrf2 的快速翻译激活和 Nrf2 核易位的促进。我们通过强调中性鞘磷脂酶 2 (nSMase2) 作为 GSH 传感器的作用,综述了 HO 在培养细胞中诱导 Nrf2 核易位的分子机制。HO 通过质膜中的水通道进入细胞,并被 GSH 过氧化物酶迅速还原为 HO,以消耗细胞内的 GSH,导致 nSMase2 激活以生成神经酰胺。HO 还激活 p38 MAP 激酶,增强 nSMase2 从核周区域向质膜脂筏的转移,以加速神经酰胺的生成。低水平的神经酰胺激活 PKCζ,然后激活酪蛋白激酶 2 (CK2)。这些蛋白激酶能够磷酸化 Nrf2 以稳定和激活它。值得注意的是,Nrf2 还与 caveolin-1 (Cav1) 结合,Cav1 保护 Nrf2 免受 Keap1 介导的降解,并限制 Nrf2 的核易位。我们提出,Cav1 作为 HO 介导的 Nrf2 磷酸化的信号枢纽,通过激酶作用,导致 Nrf2 从 Cav1 释放,从而促进核易位。总之,HO 诱导 GSH 耗竭,这通过 Nrf2 激活来恢复,Nrf2 激活依赖于 p38/nSMase2/ceramide 信号。