Mghari Mohammed, Bouras Omar, El Hibaoui Abdelaaziz
Abdelmalek Essaâdi University, Faculty of Science, Computer Science Department, P.O. Box. 2121 M'Hannech II, Tetuan, 93030, Morocco.
Data Brief. 2022 Aug 17;44:108540. doi: 10.1016/j.dib.2022.108540. eCollection 2022 Oct.
The chain of narrators (Sanad) plays a vital role in deciding the authenticity of Islamic hadiths. However, the investigation and validation of such Sanad fully depend on scientists (Hadith Scholars). They ordinarily utilize their acquired knowledge, which in this manner needs a critical sum of exertion and time. Automated Sanad evaluation using machine learning algorithms is the best way to solve this problem. Therefore, a representative Sanad dataset is required. This paper presents a full hadith dataset which is named and is made openly accessible for researchers. corpus contains over 650,986 records collected from 926 historical Arabic books of hadith. This dataset can be used for further investigation and classification of hadiths (Strong/Weak), and narrators (trustworthy/not) using AI techniques, and also it can be used as a linguistic resource tool for Arabic Natural Language Processing. Our dataset is collected from online Hadith sources using data scraping and web crawling. The main contribution of this dataset is the extraction of narrator chains that were originally present in textual form within Hadith books. Each observation in the dataset contains complete information about a specific hadith, such as (original book, number, Hadith text, Matn, list of narrators, and the number of narrators).
传述世系链(Sanad)在判定伊斯兰教圣训的真实性方面起着至关重要的作用。然而,对这种传述世系链的调查与验证完全依赖于学者(圣训学者)。他们通常运用所积累的知识,而这需要相当多的努力和时间。使用机器学习算法进行传述世系链的自动评估是解决这一问题的最佳途径。因此,需要一个具有代表性的传述世系链数据集。本文呈现了一个完整的圣训数据集,名为 ,并向研究人员开放获取。该语料库包含从926本阿拉伯圣训历史书籍中收集的超过650,986条记录。这个数据集可用于使用人工智能技术对圣训(强/弱)以及传述者(可信/不可信)进行进一步的调查和分类,并且还可作为阿拉伯语自然语言处理的语言资源工具。我们的数据集是通过数据抓取和网络爬虫从在线圣训来源收集的。这个数据集的主要贡献在于提取了原本以文本形式存在于圣训书籍中的传述者链。数据集中的每个观测值都包含关于特定圣训的完整信息,例如(原书、编号、圣训文本、正文、传述者列表以及传述者数量)。