Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel.
Phys Chem Chem Phys. 2022 Oct 12;24(39):24021-24031. doi: 10.1039/d2cp03064k.
The entropy production rate (EPR) measures time-irreversibility in systems operating far from equilibrium. The challenge in estimating the EPR for a continuous variable system is the finite spatiotemporal resolution and the limited accessibility to all of the nonequilibrium degrees of freedom. Here, we estimate the irreversibility in partially observed systems following oscillatory dynamics governed by coupled overdamped Langevin equations. We coarse-grain an observed variable of a nonequilibrium driven system into a few discrete states and estimate a lower bound on the total EPR. As a model system, we use hair-cell bundle oscillations driven by molecular motors, such that the bundle tip position is observed, but the positions of the motors are hidden. In the observed variable space, the underlying driven process exhibits second-order semi-Markov statistics. The waiting time distributions (WTD), associated with transitions among the coarse-grained states, are non-exponential and convey the information on the broken time-reversal symmetry. By invoking the underlying time-irreversibility, we calculate a lower bound on the total EPR from the Kullback-Leibler divergence (KLD) between WTD. We show that the mean dwell-time asymmetry factor - the ratio between the mean dwell-times along the forward direction and the backward direction, can qualitatively measure the degree of broken time reversal symmetry and increases with finer spatial resolution. Finally, we apply our methodology to a continuous-time discrete Markov chain model, coarse-grained into a linear system exhibiting second-order semi-Markovian statistics, and demonstrate the estimation of a lower bound on the total EPR from irreversibility manifested only in the WTD.
摘 要
熵产生率(EPR)度量远离平衡态运行的系统中的时间不可逆性。对于连续变量系统,估计 EPR 的挑战在于有限的时空分辨率以及对所有非平衡自由度的有限可及性。在这里,我们根据由耦合过阻尼朗之万方程控制的振荡动力学来估计部分观测系统的不可逆性。我们将非平衡驱动系统的一个观测变量粗粒化为几个离散状态,并估计总 EPR 的下界。作为模型系统,我们使用由分子马达驱动的毛细胞束振荡,使得可以观察到束尖端位置,但马达的位置是隐藏的。在观测变量空间中,基础驱动过程表现出二阶半马尔可夫统计。与粗粒化状态之间的跃迁相关联的等待时间分布(WTD)是非指数的,并传递关于时间反转对称性被破坏的信息。通过调用潜在的时间不可逆性,我们从 WTD 之间的 Kullback-Leibler 发散(KLD)计算总 EPR 的下界。我们表明,平均停留时间不对称因子 - 沿前进方向和后退方向的平均停留时间之间的比率,可以定性地测量时间反转对称性被破坏的程度,并随着空间分辨率的提高而增加。最后,我们将我们的方法应用于连续时间离散马尔可夫链模型,将其粗粒化为表现出二阶半马尔可夫统计的线性系统,并从仅在 WTD 中表现出的不可逆性来演示总 EPR 的下界估计。