Suppr超能文献

用于傅里叶变换离子淌度实验的频率调制波形生成的考虑因素。

Considerations for Generating Frequency Modulation Waveforms for Fourier Transform-Ion Mobility Experiments.

机构信息

Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.

出版信息

J Am Soc Mass Spectrom. 2022 Oct 5;33(10):1858-1864. doi: 10.1021/jasms.2c00168. Epub 2022 Sep 6.

Abstract

By casting the information regarding an ion population's mobility in the frequency domain, the coupling of time-dispersive ion mobility techniques is now imminently compatible with slower mass analyzers such as ion traps. Recent reports have detailed the continued progress toward maximizing the efficiency of the Fourier transform ion mobility-mass spectrometry (FT-IM-MS) experiments, but few reports have outlined the intersection between the practical considerations of implementation against the theoretical limits imposed by traditional signal processing techniques. One of the important concerns for Fourier-based multiplexing experiments is avoiding signal aliasing as a product of undersampled signals that may occur during data acquisition. In addition to traditional considerations such as detector sampling frequency, the limitations (i.e., maximum measurable drift time) imposed by experimental mass scan duration and the frequency sweep used for ion gate modulation must also be assessed. This work aims to connect the fundamental underpinnings of FT-IM-MS experiments and the associated experimental parameters that are encountered when coupling the comparatively fast separations in the mobility domain with the slower / scanning common for ion-trap mass analyzers. In addition to stating the relevant theory that applies to the FT-IM-MS experiment, this report highlights how aliased signals will manifest post Fourier transform in reconstructed arrival time distributions and calculated mobilities.

摘要

通过在频域中对离子群体迁移率的信息进行分析,现在时间分散型离子迁移率技术的耦合与离子阱等较慢的质量分析器完全兼容。最近的报告详细介绍了如何最大限度地提高傅里叶变换离子迁移率-质谱(FT-IM-MS)实验效率的持续进展,但很少有报告概述了实施的实际考虑因素与传统信号处理技术施加的理论限制之间的交点。基于傅里叶的多路复用实验的一个重要关注点是避免信号混叠,因为在数据采集过程中可能会出现欠采样信号的产物。除了传统的考虑因素,如探测器采样频率,实验质量扫描持续时间和离子门调制所用的频率扫描施加的限制(即最大可测量漂移时间)也必须进行评估。这项工作旨在连接 FT-IM-MS 实验的基本原理和相关的实验参数,当将迁移率域中相对较快的分离与离子阱质量分析器较慢/扫描速度耦合时,就会遇到这些参数。除了说明适用于 FT-IM-MS 实验的相关理论外,本报告还重点介绍了在重建到达时间分布和计算迁移率时,如何在傅里叶变换后显示混叠信号。

相似文献

1
Considerations for Generating Frequency Modulation Waveforms for Fourier Transform-Ion Mobility Experiments.
J Am Soc Mass Spectrom. 2022 Oct 5;33(10):1858-1864. doi: 10.1021/jasms.2c00168. Epub 2022 Sep 6.
2
Nonlinear Frequency Modulation for Fourier Transform Ion Mobility Mass Spectrometry Improves Experimental Efficiency.
Int J Mass Spectrom. 2024 Mar;497. doi: 10.1016/j.ijms.2024.117197. Epub 2024 Jan 9.
3
Improving Ion Mobility Mass Spectrometry of Proteins through Tristate Gating and Optimization of Multiplexing Parameters.
J Am Soc Mass Spectrom. 2023 Jan 4;34(1):101-108. doi: 10.1021/jasms.2c00274. Epub 2022 Dec 5.
4
A two-phase approach to Fourier transform ion mobility time-of-flight mass spectrometry.
Analyst. 2015 Oct 21;140(20):6862-70. doi: 10.1039/c5an00941c.
5
Fourier Deconvolution Ion Mobility Spectrometry.
Talanta. 2022 May 1;241:123270. doi: 10.1016/j.talanta.2022.123270. Epub 2022 Feb 1.
6
Synchronized Stepped Frequency Modulation for Multiplexed Ion Mobility Measurements.
J Am Soc Mass Spectrom. 2022 Mar 2;33(3):557-564. doi: 10.1021/jasms.1c00365. Epub 2022 Feb 2.
7
Fundamental study of ion trapping and multiplexing using drift tube-ion mobility time-of-flight mass spectrometry for non-targeted metabolomics.
Anal Bioanal Chem. 2019 Sep;411(24):6265-6274. doi: 10.1007/s00216-019-02021-8. Epub 2019 Jul 13.
8
Almost perfect sequence modulated multiplexing ion mobility spectrometry.
Rapid Commun Mass Spectrom. 2022 Aug 30;36(16):e9329. doi: 10.1002/rcm.9329.
9
Determination of Gas-Phase Ion Mobility Coefficients Using Voltage Sweep Multiplexing.
J Am Soc Mass Spectrom. 2019 Jun;30(6):977-986. doi: 10.1007/s13361-019-02182-x. Epub 2019 Apr 15.

引用本文的文献

1
Nonlinear Frequency Modulation for Fourier Transform Ion Mobility Mass Spectrometry Improves Experimental Efficiency.
Int J Mass Spectrom. 2024 Mar;497. doi: 10.1016/j.ijms.2024.117197. Epub 2024 Jan 9.
2
Implementation of an Open-Source Multiplexing Ion Gate Control for High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS).
J Am Soc Mass Spectrom. 2023 Jul 5;34(7):1283-1294. doi: 10.1021/jasms.3c00013. Epub 2023 Jun 5.
3
FTflow: An Open-Source Python GUI for FT-IM-MS Experiments.
J Am Soc Mass Spectrom. 2023 Apr 5;34(4):790-793. doi: 10.1021/jasms.2c00352. Epub 2023 Feb 28.

本文引用的文献

1
Synchronized Stepped Frequency Modulation for Multiplexed Ion Mobility Measurements.
J Am Soc Mass Spectrom. 2022 Mar 2;33(3):557-564. doi: 10.1021/jasms.1c00365. Epub 2022 Feb 2.
2
Separations of Carbohydrates with Noncovalent Shift Reagents by Frequency-Modulated Ion Mobility-Orbitrap Mass Spectrometry.
J Am Soc Mass Spectrom. 2021 Sep 1;32(9):2472-2480. doi: 10.1021/jasms.1c00184. Epub 2021 Aug 5.
3
Variable-Temperature Electrospray Ionization for Temperature-Dependent Folding/Refolding Reactions of Proteins and Ligand Binding.
Anal Chem. 2021 May 11;93(18):6924-6931. doi: 10.1021/acs.analchem.1c00870. Epub 2021 Apr 27.
4
Assessing the Impact of Drift Gas Polarizability in Polyatomic Ion Mobility Experiments.
Anal Chem. 2020 Mar 17;92(6):4226-4234. doi: 10.1021/acs.analchem.9b04468. Epub 2020 Feb 26.
5
Increased ion throughput using tristate ion-gate multiplexing.
Analyst. 2019 Nov 4;144(22):6660-6670. doi: 10.1039/c9an01585j.
6
Determination of Gas-Phase Ion Mobility Coefficients Using Voltage Sweep Multiplexing.
J Am Soc Mass Spectrom. 2019 Jun;30(6):977-986. doi: 10.1007/s13361-019-02182-x. Epub 2019 Apr 15.
7
Collision cross section compendium to annotate and predict multi-omic compound identities.
Chem Sci. 2018 Nov 27;10(4):983-993. doi: 10.1039/c8sc04396e. eCollection 2019 Jan 28.
8
Fourier Transform-Ion Mobility-Orbitrap Mass Spectrometer: A Next-Generation Instrument for Native Mass Spectrometry.
Anal Chem. 2018 Sep 4;90(17):10472-10478. doi: 10.1021/acs.analchem.8b02463. Epub 2018 Aug 22.
9
Initial Protein Unfolding Events in Ubiquitin, Cytochrome c and Myoglobin Are Revealed with the Use of 213 nm UVPD Coupled to IM-MS.
J Am Soc Mass Spectrom. 2019 Jan;30(1):24-33. doi: 10.1007/s13361-018-1992-0. Epub 2018 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验