Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
Genetics. 2022 Nov 1;222(3). doi: 10.1093/genetics/iyac136.
The NuA4 lysine acetyltransferase complex acetylates histone and nonhistone proteins and functions in transcription regulation, cell cycle progression, and DNA repair. NuA4 harbors an interesting duality in that its catalytic module can function independently and distinctly as picNuA4. At the molecular level, picNuA4 anchors to its bigger brother via physical interactions between the C-terminus of Epl1 and the HSA domain of Eaf1, the NuA4 central scaffolding subunit. This is reflected at the regulatory level, as picNuA4 can be liberated genetically from NuA4 by disrupting the Epl1-Eaf1 interaction. As such, removal of either Eaf1 or the Epl1 C-terminus offers a unique opportunity to elucidate the contributions of Eaf1 and Epl1 to NuA4 biology and in turn their roles in balancing picNuA4 and NuA4 activities. Using high-throughput genetic and gene expression profiling, and targeted functional assays to compare eaf1Δ and epl1-CΔ mutants, we found that EAF1 and EPL1 had both overlapping and distinct roles. Strikingly, loss of EAF1 or its HSA domain led to a significant decrease in the amount of picNuA4, while loss of the Epl1 C-terminus increased picNuA4 levels, suggesting starkly opposing effects on picNuA4 regulation. The eaf1Δ epl1-CΔ double mutants resembled the epl1-CΔ single mutants, indicating that Eaf1's role in picNuA4 regulation depended on the Epl1 C-terminus. Key aspects of this regulation were evolutionarily conserved, as truncating an Epl1 homolog in human cells increased the levels of other picNuA4 subunits. Our findings suggested a model in which distinct aspects of the Epl1-Eaf1 interaction regulated picNuA4 amount and activity.
NuA4 赖氨酸乙酰转移酶复合物乙酰化组蛋白和非组蛋白,并在转录调控、细胞周期进程和 DNA 修复中发挥作用。NuA4 具有有趣的双重性,其催化模块可以独立且明显地作为 picNuA4 发挥作用。在分子水平上,picNuA4 通过 Epl1 的 C 端与 Eaf1 的 HSA 结构域之间的物理相互作用,锚定在其较大的兄弟上,Eaf1 是 NuA4 的中心支架亚基。这在调节水平上得到了反映,因为通过破坏 Epl1-Eaf1 相互作用,可以从 NuA4 中遗传上释放出 picNuA4。因此,去除 Eaf1 或 Epl1 的 C 端为阐明 Eaf1 和 Epl1 对 NuA4 生物学的贡献以及它们在平衡 picNuA4 和 NuA4 活性中的作用提供了独特的机会。我们使用高通量遗传和基因表达谱分析以及靶向功能测定来比较 eaf1Δ 和 epl1-CΔ 突变体,发现 EAF1 和 EPL1 具有重叠和独特的作用。引人注目的是,缺失 EAF1 或其 HSA 结构域会导致 picNuA4 的量显著减少,而缺失 Epl1 的 C 端会增加 picNuA4 的水平,表明对 picNuA4 调节的作用截然相反。eaf1Δ epl1-CΔ 双突变体类似于 epl1-CΔ 单突变体,表明 Eaf1 在 picNuA4 调节中的作用取决于 Epl1 的 C 端。这种调节的关键方面在进化上是保守的,因为在人类细胞中截断 Epl1 同源物会增加其他 picNuA4 亚基的水平。我们的研究结果表明,Epl1-Eaf1 相互作用的不同方面调节 picNuA4 的数量和活性。