Departments of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Adv Neurobiol. 2022;28:233-258. doi: 10.1007/978-3-031-07167-6_10.
Motor units, which comprise a motoneuron and the set of muscle fibers it innervates, are the fundamental neuromuscular transducers for all motor commands. The one to one relationship between a motoneuron and its innervated muscle fibers allow motoneuron firing patterns to be readily measured in humans. In this chapter, we summarize the current understanding of the cellular basis for the generation of firing patterns in human motor units. We provide a brief review of landmark insights from classic studies and then proceed to consider the features of motor unit firing patterns that are most likely to be sensitive estimators of motoneuron inputs and properties. In addition, we discuss recent advances in technology for recording human motor unit firing patterns and highly realistic computer simulations of motoneurons. The final section presents our recent efforts to use the power of supercomputers for implementation of the motoneuron models, with a goal of achieving a true "reverse engineering" approach that maximizes the insights from motor unit firing patterns into the synaptic structure of motor commands.
运动单位由一个运动神经元及其支配的一组肌纤维组成,是所有运动指令的基本神经肌肉换能器。运动神经元与其支配的肌纤维之间的一对一关系使得运动神经元的放电模式可以在人类中被轻易测量。在本章中,我们总结了目前对人类运动单位放电模式产生的细胞基础的理解。我们简要回顾了经典研究中的标志性见解,然后继续考虑最有可能成为运动神经元输入和特性的敏感估计器的运动单位放电模式的特征。此外,我们还讨论了记录人类运动单位放电模式的技术和高度逼真的运动神经元计算机模拟的最新进展。最后一节介绍了我们最近利用超级计算机的强大功能来实现运动神经元模型的努力,目标是实现真正的“逆向工程”方法,使从运动单位放电模式中获得的对运动指令的突触结构的洞察力最大化。