O'Mahony Shane M, Ren Wangping, Chen Weijiong, Chong Yi Xue, Liu Xiaolong, Eisaki H, Uchida S, Hamidian M H, Davis J C Séamus
Department of Physics, University College Cork, Cork T12 R5C, Ireland.
Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom.
Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2207449119. doi: 10.1073/pnas.2207449119. Epub 2022 Sep 6.
The elementary CuO plane sustaining cuprate high-temperature superconductivity occurs typically at the base of a periodic array of edge-sharing CuO pyramids. Virtual transitions of electrons between adjacent planar Cu and O atoms, occurring at a rate t/ℏ and across the charge-transfer energy gap [Formula: see text], generate "superexchange" spin-spin interactions of energy [Formula: see text] in an antiferromagnetic correlated-insulator state. However, hole doping this CuO plane converts this into a very-high-temperature superconducting state whose electron pairing is exceptional. A leading proposal for the mechanism of this intense electron pairing is that, while hole doping destroys magnetic order, it preserves pair-forming superexchange interactions governed by the charge-transfer energy scale [Formula: see text]. To explore this hypothesis directly at atomic scale, we combine single-electron and electron-pair (Josephson) scanning tunneling microscopy to visualize the interplay of [Formula: see text] and the electron-pair density in BiSrCaCuO. The responses of both [Formula: see text] and to alterations in the distance between planar Cu and apical O atoms are then determined. These data reveal the empirical crux of strongly correlated superconductivity in CuO, the response of the electron-pair condensate to varying the charge-transfer energy. Concurrence of predictions from strong-correlation theory for hole-doped charge-transfer insulators with these observations indicates that charge-transfer superexchange is the electron-pairing mechanism of superconductive BiSrCaCuO.
维持铜酸盐高温超导性的基本氧化铜平面通常出现在边共享氧化铜金字塔周期性阵列的底部。相邻平面铜和氧原子之间电子的虚拟跃迁,以速率t/ℏ发生并跨越电荷转移能隙[公式:见原文],在反铁磁相关绝缘态中产生能量为[公式:见原文]的“超交换”自旋-自旋相互作用。然而,对该氧化铜平面进行空穴掺杂会将其转变为一个非常高温的超导态,其电子配对情况很特殊。对于这种强烈电子配对机制的一个主要提议是,虽然空穴掺杂破坏了磁序,但它保留了由电荷转移能量尺度[公式:见原文]控制的配对超交换相互作用。为了在原子尺度上直接探索这一假设,我们结合单电子和电子对(约瑟夫森)扫描隧道显微镜来观察铋锶钙铜氧中[公式:见原文]和电子对密度之间的相互作用。然后确定[公式:见原文]和对平面铜与顶端氧原子之间距离变化的响应。这些数据揭示了氧化铜中强关联超导性的经验关键,即电子对凝聚体对电荷转移能量变化的响应。强关联理论对空穴掺杂电荷转移绝缘体的预测与这些观察结果的一致性表明,电荷转移超交换是超导铋锶钙铜氧的电子配对机制。