Department of Chemistry, Korea University, Seoul 02841, Korea.
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
Nano Lett. 2022 Sep 28;22(18):7682-7689. doi: 10.1021/acs.nanolett.2c03083. Epub 2022 Sep 6.
The Seebeck effect of a molecular junction in a hopping regime or tunneling-to-hopping transition remains uncertain. This paper describes the Seebeck effect in molecular epitaxy films (OPI where = 1-9) based on imine condensation between an aryl amine and aldehyde and investigates how the Seebeck coefficient (, μV/K) varies at the crossover region. The value of OPI linearly increased with increasing the molecular length (, nm), ranging from 7.2 to 38.0 μV/K. The increasing rate changed from 0.99 to 0.38 μV·K Å at = 3.4 nm (OPI). Combined experimental and theoretical studies indicated that such a change stems from a tunneling-to-hopping transition, and the small but detectable length-dependence of thermopower in the long molecules originates from the gradual reduction of the tunneling contribution to the broadening of molecular orbital energy level, rather than its relative position to the Fermi level. Our work helps to bridge the gap between bulk and nanoscale thermoelectric systems.
在跳跃或隧穿到跳跃转变的状态下,分子结的塞贝克效应仍不确定。本文描述了基于芳基胺和醛之间的亚胺缩合的分子外延薄膜(其中 = 1-9)的塞贝克效应,并研究了在交叉区域塞贝克系数(,μV/K)如何变化。OPI 的 值随分子长度(,nm)的增加呈线性增加,范围从 7.2 到 38.0 μV/K。在 = 3.4nm(OPI)时,增长率从 0.99 变为 0.38μV·K Å。实验和理论研究的结合表明,这种变化源于隧穿到跳跃的转变,而在长分子中热功率的微小但可检测的长度依赖性源自于隧穿贡献对分子轨道能级展宽的逐渐减小,而不是其相对于费米能级的相对位置。我们的工作有助于弥合体相和纳米尺度热电系统之间的差距。