Liu Huan, Jiang Lin, Cao Bin, Du Huiling, Lu Hai, Ma Yu, Wang Hao, Guo Hongyu, Huang Qizheng, Xu Bin, Guo Shaojun
College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
School of Materials Science and Engineering, Peking University, Beijing 100871, China.
ACS Nano. 2022 Sep 27;16(9):14539-14548. doi: 10.1021/acsnano.2c04968. Epub 2022 Sep 6.
Aqueous zinc-ion batteries (AZIBs) are attractive energy storage devices that benefit from improved safety and negligible environmental impact. The VO-based cathodes are highly promising, but the dissolution of vanadium is one of the major challenges in realizing their stable performance in AZIBs. Herein, we design a TiCT MXene layer on the surface of VO nanoplates (VPMX) through a van der Waals self-assembly approach for suppressing vanadium dissolution during an electrochemical process for greatly boosting the zinc-ion storage performance. Unlike conventional VO/C composites, we demonstrate that the VPMX hybrids offer three distinguishable features for achieving high-performance AZIBs: (i) the MXene layer on cathode surface maintains structural integrity and suppresses V dissolution; (ii) the heterointerface between VO and MXene enables improved host electrochemical kinetics; (iii) reduced electrostatic repulsion exists among host layers owing to the lubricating water molecules in the VPMX cathode, facilitating interfacial Zn diffusion. As a result, the as-made VPMX cathode shows a long-term cycling stability over 5000 cycles, surpassing other reported VO-based materials. Especially, we find that the heterointerface between VO and MXene and lubricated water molecules in the host can achieve an enhanced rate capability (243.6 mAh g at 5.0 A g) for AZIBs.
水系锌离子电池(AZIBs)是具有吸引力的储能装置,具有安全性提高和环境影响可忽略不计的优点。基于VO的阴极极具前景,但钒的溶解是在AZIBs中实现其稳定性能的主要挑战之一。在此,我们通过范德华自组装方法在VO纳米片(VPMX)表面设计了一层TiCT MXene层,以抑制电化学过程中的钒溶解,从而大大提高锌离子存储性能。与传统的VO/C复合材料不同,我们证明VPMX杂化物具有实现高性能AZIBs的三个显著特征:(i)阴极表面的MXene层保持结构完整性并抑制V溶解;(ii)VO和MXene之间的异质界面使主体电化学动力学得到改善;(iii)由于VPMX阴极中的润滑水分子,主体层之间的静电排斥减少,促进了界面Zn扩散。结果,制成的VPMX阴极在5000次循环中显示出长期循环稳定性,超过了其他报道的基于VO的材料。特别是,我们发现VO和MXene之间的异质界面以及主体中的润滑水分子可以实现AZIBs增强的倍率性能(在5.0 A g下为243.6 mAh g)。