Sun Minghui, Wang Xiaoguang, Pan Honghui, Pang Zhihui, Zhang Yanrong
Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, China.
Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, China.
J Colloid Interface Sci. 2023 Jan;629(Pt A):215-224. doi: 10.1016/j.jcis.2022.08.142. Epub 2022 Aug 28.
Industry for producing the vital chemical hydrogen peroxide (HO) requires drastically reductions in energy consumption and environmental pollution. Solar chemical conversion from O to HO is considered to be the most promising alternative method, nevertheless, weak energy coupling between photo-charges and adsorbed species limits the yield of HO. Herein, we demonstrate that oxygen vacancy-rich BiVO can efficiently generate HO in pure water under visible light irradiation without any heterojunctions or precious-metal cocatalysts. Oxygen vacancies, as typical coordinatively unsaturated sites, enable efficient O adsorption and enrichment, and then thriving chemisorption can spatially facilitate photoexcited electrons transfer to oxygen species. Compared to pristine BiVO, defective BiVO enhanced O adsorption and interfacial electron transfer rate to O by 19 and 23 times, respectively, resulting in a more than 32-fold increase in HO production. This research offers a new perspective for bridging solar and chemical energy by assuring species chemisorption.
生产重要化学物质过氧化氢(HO)的行业需要大幅降低能源消耗和环境污染。从O到HO的太阳能化学转化被认为是最有前途的替代方法,然而,光电荷与吸附物种之间的弱能量耦合限制了HO的产量。在此,我们证明了富含氧空位的BiVO在可见光照射下的纯水中无需任何异质结或贵金属助催化剂就能高效生成HO。氧空位作为典型的配位不饱和位点,能够实现高效的O吸附和富集,进而旺盛的化学吸附可以在空间上促进光激发电子向氧物种的转移。与原始BiVO相比,缺陷BiVO分别将O的吸附和界面电子转移速率提高了19倍和23倍,导致HO产量增加了32倍以上。这项研究通过确保物种化学吸附为连接太阳能和化学能提供了新的视角。