Suppr超能文献

利用机器学习自动测量特发性脊柱侧凸青少年的X线片上的椎体轴向旋转。

Using machine learning to automatically measure axial vertebral rotation on radiographs in adolescents with idiopathic scoliosis.

作者信息

Logithasan Veena, Wong Jason, Reformat Marek, Lou Edmond

机构信息

Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.

Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.

出版信息

Med Eng Phys. 2022 Sep;107:103848. doi: 10.1016/j.medengphy.2022.103848. Epub 2022 Jul 11.

Abstract

Adolescent idiopathic scoliosis is a 3D lateral spinal curvature coupled with axial vertebral rotation (AVR). Measuring AVR during clinic is important because it affects treatment options and predicts the risk of scoliosis progression. However, manual measurements are time consuming and have high inter-rater and intra-rater errors. This study aimed to develop a machine learning algorithm based on convolutional neural networks (CNNs) to automatically calculate AVR on posteroanterior radiographs using three different segmentations including spinal column, individual vertebra, and pedicles. Separate labeling and training processes were performed on each of the developed segmentation algorithms. The final machine learning software was tested on 221 vertebrae from 17 spinal radiographs. An experienced rater with over 25 years of experience measured the 221 vertebral rotations manually. By comparing the manual and the fully automatic measurements, 81% (178/221) of the automatic measurements were within the clinical acceptance error (±5°). The mean absolute difference and the standard deviation between the manual and automatic measurements was 4.3° ± 5.7°. Based on the Bland-Altman plot, the manual and automatic measurements had a strong correlation and no bias. The error did not relate to the severity of the rotation. This method is fully automatic, and the result is comparable to others.

摘要

青少年特发性脊柱侧弯是一种伴有椎体轴向旋转(AVR)的三维脊柱侧凸。在临床中测量AVR很重要,因为它会影响治疗方案并预测脊柱侧弯进展的风险。然而,手动测量耗时且存在较高的评分者间和评分者内误差。本研究旨在开发一种基于卷积神经网络(CNN)的机器学习算法,使用包括脊柱、单个椎体和椎弓根在内的三种不同分割方法,在正位X线片上自动计算AVR。对每种开发的分割算法分别进行标注和训练过程。最终的机器学习软件在来自17张脊柱X线片的221个椎体上进行了测试。一位有超过25年经验的经验丰富的评分者手动测量了这221个椎体的旋转角度。通过比较手动测量和全自动测量结果,81%(178/221)的自动测量结果在临床可接受误差(±5°)范围内。手动测量和自动测量之间的平均绝对差值和标准差为4.3°±5.7°。基于布兰德-奥特曼图,手动测量和自动测量具有很强的相关性且无偏差。误差与旋转的严重程度无关。该方法是全自动的,结果与其他方法相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验