Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
Department of Orthopaedics, Montefiore Medical Center, Bronx, NY, 10461, USA.
Spine Deform. 2024 Nov;12(6):1545-1570. doi: 10.1007/s43390-024-00940-w. Epub 2024 Aug 17.
Adolescent idiopathic scoliosis (AIS) is a common spinal deformity with varying progression, complicating treatment decisions. Artificial intelligence (AI) and machine learning (ML) are increasingly prominent in orthopedic care, aiding in diagnosis, risk-stratification, and treatment guidance. This scoping review outlines AI applications in AIS.
This study followed PRISMA-ScR guidelines and included articles that reported the development, use, or validation of AI models for treating, diagnosing, or predicting clinical outcomes in AIS.
40 full-text articles were included, with most studies published in the last 5 years (77.5%). Common ML techniques were convolutional neural networks (55%), decision trees and random forests (15%), and artificial neural networks (15%). Most AI applications in AIS were for imaging analysis (25/40; 62.5%), focusing on automatic measurement of Cobb angle, and axial vertebral rotation (13/25; 52%) and curve classification/severity (13/25; 52%). Prediction was the second most common application (15/40; 37.5%), with studies predicting curve progression (9/15; 60%), and Cobb angles (9/15; 60%). Only 15 studies (37.5%) reported clinical implementation guidelines for AI in AIS management. 52.5% of studies reported model accuracy, with an average of 85.4%.
This review highlights the applications of AI in AIS care, notably including automatic radiographic analysis, curve type classification, prediction of curve progression, and AIS diagnosis. However, the current lack of clear clinical implementation guidelines, model transparency, and external validation of studied models limits clinician trust and the generalizability and applicability of AI in AIS management.
青少年特发性脊柱侧凸(AIS)是一种常见的脊柱畸形,其进展情况各不相同,这使得治疗决策变得复杂。人工智能(AI)和机器学习(ML)在骨科护理中越来越突出,有助于诊断、风险分层和治疗指导。本范围综述概述了 AI 在 AIS 中的应用。
本研究遵循 PRISMA-ScR 指南,纳入了报告开发、使用或验证 AI 模型用于治疗、诊断或预测 AIS 临床结局的文章。
纳入了 40 篇全文文章,其中大多数研究是在过去 5 年内发表的(77.5%)。常见的 ML 技术是卷积神经网络(55%)、决策树和随机森林(15%)和人工神经网络(15%)。AIS 中大多数 AI 应用是用于影像学分析(25/40;62.5%),重点是自动测量 Cobb 角和轴向椎体旋转(13/25;52%)和曲线分类/严重程度(13/25;52%)。预测是第二常见的应用(15/40;37.5%),研究预测了曲线进展(9/15;60%)和 Cobb 角(9/15;60%)。只有 15 项研究(37.5%)报告了 AI 在 AIS 管理中的临床实施指南。52.5%的研究报告了模型准确性,平均为 85.4%。
本综述强调了 AI 在 AIS 护理中的应用,特别是包括自动影像学分析、曲线类型分类、曲线进展预测和 AIS 诊断。然而,目前缺乏明确的临床实施指南、模型透明度以及对研究模型的外部验证,这限制了临床医生的信任以及 AI 在 AIS 管理中的可推广性和适用性。