Suppr超能文献

基于多传感器信息融合和改进的 DBNs 在有限数据集下的轧机健康状态诊断方法。

Rolling mill health states diagnosing method based on multi-sensor information fusion and improved DBNs under limited datasets.

机构信息

School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.

School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.

出版信息

ISA Trans. 2023 Mar;134:529-547. doi: 10.1016/j.isatra.2022.08.002. Epub 2022 Aug 13.

Abstract

Due to the harsh working conditions and high cost of data acquisition in the actual environment of modern rolling mills, the resulting limited datasets issue leading in performance collapse of traditional deep learning (DL) methods has been plaguing researchers and needs to be urgently addressed. Hence, an improved single-sensor Deep Belief Network (IDBN) is first proposed to repetitively extract valuable information from hidden features and visible features of the previous improved Restricted Boltzmann Machine (IRBM) to alleviate this issue. Next, the multi-sensor IDBNs (MSIDBNs) are applied to obtain complementary and enriched health state features from different multi-sensor data to cope with limited datasets more effectively. Then, the Fast Fourier Transform (FFT) technique is adopted for the multi-sensor information to further enhance the effectiveness of feature extraction. Most importantly, the redefined pretraining and finetuning stages are designed for the MSIDBNs. Meanwhile, the optimal placement of multiple sensors is fully discussed to obtain the most efficient information about health content. Finally, two limited datasets are conducted to validate the superiority of the proposed MSIDBNs. Results show that the proposed MSIDBNs are capable of extracting valuable features from multi-sensor information and achieving more remarkable performance compared with the state-of-the-art (SOTA) methods under limited datasets.

摘要

由于现代轧机实际环境中的工作条件苛刻且数据采集成本高,导致传统深度学习 (DL) 方法的性能崩溃的有限数据集问题一直困扰着研究人员,需要紧急解决。因此,首先提出了一种改进的单传感器深度置信网络 (IDBN),通过重复从以前改进的限制玻尔兹曼机 (IRBM) 的隐藏特征和可见特征中提取有价值的信息来缓解这个问题。接下来,应用多传感器 IDBN (MSIDBN) 从不同的多传感器数据中获取互补和丰富的健康状态特征,以更有效地处理有限的数据集。然后,采用快速傅里叶变换 (FFT) 技术对多传感器信息进行处理,进一步增强特征提取的有效性。最重要的是,为 MSIDBN 重新定义了预训练和微调阶段。同时,充分讨论了多个传感器的最佳放置位置,以获取有关健康内容的最有效信息。最后,进行了两个有限数据集实验来验证所提出的 MSIDBN 的优越性。结果表明,所提出的 MSIDBN 能够从多传感器信息中提取有价值的特征,并在有限的数据集条件下,与最先进的 (SOTA) 方法相比,取得了更卓越的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验